Molteno Formation

Last updated
Molteno Formation
Stratigraphic range: Carnian
~237–228  Ma
Molteno Dam - panoramio.jpg
Molteno Dam outside the town Molteno, Eastern Cape, South Africa
Type Geological formation
Unit of Stormberg Group
Sub-unitsBamboesberg Member, Indwe Sandstone member, Mayaputi Member, Qiba Member and Tsomo Member
Underlies Elliot Formation
Overlies Beaufort Group
Thicknessup to 600 m (2,000 ft)
Lithology
Primary Sandstone, claystone
Other Mudstone, siltstone
Location
Coordinates 31°23′46″S26°21′47″E / 31.39611°S 26.36306°E / -31.39611; 26.36306
Region Eastern Cape, KwaZulu-Natal & Free State
CountryFlag of South Africa.svg  South Africa
Flag of Lesotho.svg  Lesotho
Type section
Named for Molteno, Eastern Cape
South Africa relief location map.svg
Pink ff0080 pog.svg
Pink ff0080 pog.svg
Molteno Formation (South Africa)

The Molteno Formation is a geological formation found in several localities in Lesotho and South Africa. It lies mainly south of Maseru, near Burgersdorp, Aliwal North, Dordrecht, Molteno, and Elliot. It extends as far north as Matatiele in the Eastern Cape. The formation's localities lie along the Drakensberg Mountains in Kwazulu-Natal, and near Ladybrand in the Free State of South Africa. The Molteno Formation is the lowermost of the three formations in the Stormberg Group of the greater Karoo Supergroup. The Molteno Formation represents the initial phase of preserved sedimentation of the Stormberg Group. [1] [2]

Contents

Geology

View towards Stormberg Mountains near Molteno, Eastern Cape View towards Stormberg Mountains - panoramio.jpg
View towards Stormberg Mountains near Molteno, Eastern Cape

The Molteno Formation is the lowermost geological formation of the Stormberg Group. It overlies the Burgersdorp Formation of the Beaufort Group, and underlies the lower Elliot Formation (LEF). [3] Containing alternating finely-grained, medium-grained, and coarse-grained sandstones, the formation features greyish mudstone layers with the coarser sandstones exhibiting trough cross-bedding structures. [4] [5] [6] The mudstones also contain siltstones. The sandstones contain secondary quartz over growths and clasts, giving them a distinctive glittering appearance. Finer-grained sandstones occur throughout the lower deposits of the Molteno Formation, growing coarser toward the upper sections. Sporadic coal seams populate the Molteno Formation, and less common quartz pebble and cobble conglomerates occur in the lower sections. [7] These geological features form part of six stacked fining upward cycles where repeating patterns of the coarser-grained rocks (conglomerates, coarse-grained sandstones) grade upwards into finer-grained rocks (medium to fine-grained sandstone, mudrocks, and coal seams). [8] Sandstones are more common in the lower deposits while mudstones are more dominant in the upper deposits. However, the mudstones are part of repeating fining upward cycles with coarser-grained sandstones and thin coal seams. [9] [10] [11]

The Molteno Formation has five members, from oldest to youngest:

The sediments of the different Molteno Formation members preserve the different environments in which they were first deposited. The conglomerates and coarser-grained sandstones were deposited in high-energy braided fluvial systems. The more medium to fine-grained sandstones were deposited in mixed load meandering river channels. The mudrocks were deposited in distal floodplain deposits, and the coal seams in localized peat bogs. The Molteno Formation was part of a greater inland basin, which the Gondwanide mountain range bordered in the south. Braided rivers flowed down from the mountains northwards, steadily joining meandering river channels and eventually meeting with floodplains and marshes. [12]

Ginkgo fossil similar to the fossil ginkgo species found in the Molteno Formation Ginkgo dissecta SR 96-08-01.JPG
Ginkgo fossil similar to the fossil ginkgo species found in the Molteno Formation

These depositional environments each have associated fossil flora and fauna that are unique to them. [13] The fossil flora and fauna co-associations reveal different, distinctive habitats that were present during the time. While the different depositional environments were temperate overall, they experienced extreme seasonal differences. Winters were near-freezing with moderate rainfall, and midsummer temperatures were harsh. The Permo-Triassic extinction event occurred a few million years before the Molteno Formation rock sediments were deposited. However, its lingering effects continued to influence the stability of the Earth's climate when the Molteno Formation rocks were deposited. [14]

Paleontology

Local and international paleobotanists and entomologists revere the Molteno Formation for its richly diverse plant and insect fossils. [15] [16] The Molteno Formation fossils include 204 plant species and 333 insect species, making it one of the richest Triassic-age plant and insect assemblages ever discovered. Entomologists consider the insect fauna particularly important, because well-preserved fossil remains of insects are very rare. [17]

Dicroidium fossil similar to theDicroidium species found in the Molteno Formation Dicroidium zuberi leaf.jpg
Dicroidium fossil similar to the Dicroidium species found in the Molteno Formation

The plant and insect fossils had unique ecological co-associations, and occupied distinct habitats. The dominant fossil flora is associated with seven recognized habitat types. The first two habitats include arboreal species of Dicroidium , an extinct genus of seed fern that grew in either lush, riparian forests or more temperate woodlands. Herbaceous forms of Dicroidium are also found but did not dominate. Nineteen species of Dicroidium alone have been recovered from the Molteno Formation. [18]

The next habitat is also temperate woodland, but a different seed fern species dominates it: Sphernobaiera . Another habitat contains thickets of the conifer species Heidiphyllum. Only two other species of conifer are known from the Molteno Formation. Finally, there are Equisetum (horsetail) marshes, comprising 21 species in five genera, and Ginkgophytopsis fern meadows.

The seven habitat types contain various cycad species. Cycads were as diverse as the Equisetum but appear to have been far less common, as only a few specimens have been recovered. Lycopods, bryophytes, Ginkgoales, and 50 species of fern have also been found, as well as associated plant frutifications, organs, and pollens. Fossil leaf impressions and other soft vegetative material of these species appear commonly in the low-energy mudstone-rich depositional environments. The vegetative material occurs near to where the plants had originally grown. On the other hand, floods often swept woody material far away from its original habitat. Petrified wood fragments, cones, and other woody material predominantly lie in the high-energy depositional environments dominated by the coarser sandstones. [19]

Example of fossil insect species found in the Molteno Formation Buprestidae beetle, FBNM.jpg
Example of fossil insect species found in the Molteno Formation

The Molteno Formation's insects are considered its most important fossils because of their high diversity. The insect fossils include 333 species and 117 genera. Cockroaches are the most commonly found fossil insect. However, beetles are the most rich in species, with 161 species documented. Other insect fossils include dragonflies, dragonfly aquatic nymphs, and clam shrimp species. Insect and other invertebrate trace fossils have been found in the fine sandstones and mudstone deposits. [20]

Dinosaur trackways have been found in one locality, however, no vertebrate remains have yet been yielded from the Molteno Formation. [21]

Correlation

The Molteno Formation is currently considered to correlate with parts of the Tuli Basin in the northern parts of South Africa, Botswana, and Zimbabwe. [22]

Related Research Articles

<span class="mw-page-title-main">Karoo Supergroup</span> Mesozoic stratigraphic unit in Africa

The Karoo Supergroup is the most widespread stratigraphic unit in Africa south of the Kalahari Desert. The supergroup consists of a sequence of units, mostly of nonmarine origin, deposited between the Late Carboniferous and Early Jurassic, a period of about 120 million years.

<span class="mw-page-title-main">Beaufort Group</span> Third of the main subdivisions of the Karoo Supergroup in South Africa

The Beaufort Group is the third of the main subdivisions of the Karoo Supergroup in South Africa. It is composed of a lower Adelaide Subgroup and an upper Tarkastad Subgroup. It follows conformably after the Ecca Group and unconformably underlies the Stormberg Group. Based on stratigraphic position, lithostratigraphic and biostratigraphic correlations, palynological analyses, and other means of geological dating, the Beaufort Group rocks are considered to range between Middle Permian (Wordian) to Early Triassic (Anisian) in age.

<i>Tapinocephalus</i> Assemblage Zone

The Tapinocephalus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the middle Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 2,000 metres (6,600 ft), occur from Merweville and Leeu-Gamka in its southernmost exposures, from Sutherland through to Beaufort West where outcrops start to only be found in the south-east, north of Oudshoorn and Willowmore, reaching up to areas south of Graaff-Reinet. Its northernmost exposures occur around the towns Fraserburg and Victoria West. The Tapinocephalus Assemblage Zone is the second biozone of the Beaufort Group.

<i>Lystrosaurus</i> Assemblage Zone

The Lystrosaurus Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the upper Adelaide and lower Tarkastad Subgroups of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops in the south central Eastern Cape and in the southern and northeastern Free State. The Lystrosaurus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Early Triassic in age.

<i>Tropidostoma</i> Assemblage Zone

The Tropidostoma Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the lower Teekloof Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 240 metres (790 ft), occur from east of Sutherland through to Beaufort West and Victoria West, to areas south of Graaff-Reinet. Its northernmost exposures occur west/north-west of Colesberg. The Tropidostoma Assemblage Zone is the fourth biozone of the Beaufort Group.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<span class="mw-page-title-main">Clarens Formation</span> Geological formation of the Stormberg Group in southern Africa

The Clarens Formation is a geological formation found in several localities in Lesotho and in the Free State, KwaZulu-Natal, and Eastern Cape provinces in South Africa. It is the uppermost of the three formations found in the Stormberg Group of the greater Karoo Supergroup rocks and represents the final phase of preserved sedimentation of the Karoo Basin.

<span class="mw-page-title-main">Elliot Formation</span> Lithostratigraphic layer of the Stormberg Group in South Africa

The Elliot Formation is a geological formation and forms part of the Stormberg Group, the uppermost geological group that comprises the greater Karoo Supergroup. Outcrops of the Elliot Formation have been found in the northern Eastern Cape, southern Free State, and in the eastern KwaZulu-Natal provinces of South Africa. Outcrops and exposures are also found in several localities in Lesotho such as Qacha's Neck, Hill Top, Quthing, and near the capital, Maseru. The Elliot Formation is further divided into the lower (LEF) and upper (UEF) Elliot formations to differentiate significant sedimentological differences between these layers. The LEF is dominantly Late Triassic (Norian-Hettangian) in age while the UEF is mainly Early Jurassic (Sinemurian-Pliensbachian) and is tentatively regarded to preserve a continental record of the Triassic-Jurassic boundary in southern Africa. This geological formation is named after the town of Elliot in the Eastern Cape, and its stratotype locality is located on the Barkly Pass, 9 km north of the town.

<span class="mw-page-title-main">Paskapoo Formation</span> Stratigraphic unit in Western Canada

The Paskapoo Formation is a stratigraphic unit of Middle to Late Paleocene age in the Western Canada Sedimentary Basin. The Paskapoo underlies much of southwestern Alberta, and takes the name from the Blindman River. It was first described from outcrops along that river, near its confluence with the Red Deer River north of the city of Red Deer, by Joseph Tyrrell in 1887. It is important for its freshwater aquifers, its coal resources, and its fossil record, as well as having been the source of sandstone for the construction of fire-resistant buildings in Calgary during the early 1900s.

<span class="mw-page-title-main">Stormberg Group</span> Triassic/Jurassic geological group in the Karoo Supergroup in South Africa

The Stormberg Group is one of the four geological groups that comprises the Karoo Supergroup in South Africa. It is the uppermost geological group representing the final phase of preserved sedimentation of the Karoo Basin. The Stormberg Group rocks are considered to range between Lower Triassic (Olenekian) to Lower Jurassic (Pliensbachian) in age. These estimates are based on means of geological dating including stratigraphic position, lithostratigraphic and biostratigraphic correlations, and palynological analyses.

<span class="mw-page-title-main">Dwyka Group</span> Geological group in the Karoo Supergroup from South Africa

The Dwyka Group is one of four geological groups that compose the Karoo Supergroup. It is the lowermost geological group and heralds the commencement of sedimentation of the Karoo Supergroup. Based on stratigraphic position, lithostratigraphic correlation and palynological analyses, these lowermost Karoo strata range between the Late Carboniferous (Pennsylvanian) to Early Permian in age.

<span class="mw-page-title-main">Uitenhage Group</span> Geological group of post-Karoo Mesozoic rocks in South Africa

The Uitenhage Group is one of three geological groups, which comprise the onshore and offshore post-Karoo middle to lower Upper Mesozoic geological rock units in South Africa. Stratigraphically, the Uitenhage Group overlies the Suurberg Group and is overlain by the Algoa Group. It contains four formations that range in age from late Early Jurassic and late Early Cretaceous in age.

The geology of Lesotho is built on ancient crystalline basement rock up to 3.6 billion years old, belonging to the Kaapvaal Craton, a section of stable primordial crust. Most of the rocks in the country are sedimentary or volcanic units, belonging to the Karoo Supergroup. The country is notable for large fossil deposits and intense erosion due to high rainfall and a rare case of southern African glaciation during the last ice age. Lesotho has extensive diamonds and other natural resources and has the highest concentration of kimberlite pipes anywhere in the world.

<span class="mw-page-title-main">Bokkeveld Group</span> Devonian sedimentary rocks in South Africa

The Bokkeveld Group is the second of the three main subdivisions of the Cape Supergroup in South Africa. It overlies the Table Mountain Group and underlies the Witteberg Group. The Bokkeveld Group rocks are considered to range between Lower Devonian (Lochkovian) to Middle Devonian (Givetian) in age.

<span class="mw-page-title-main">Omingonde Formation</span>

The Omingonde Formation is an Early to Middle Triassic geologic formation, part of the Karoo Supergroup, in the western Otjozondjupa Region and northeastern Erongo Region of north-central Namibia. The formation has a maximum thickness of about 600 metres (2,000 ft) and comprises sandstones, shales, siltstones and conglomerates, was deposited in a fluvial environment, alternating between a meandering and braided river setting.

<span class="mw-page-title-main">Balfour Formation</span> Geological formation in the Beaufort Group of South Africa

The Balfour Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Balfour Formation is the uppermost formation of the Adelaide Subgroup which contains all the Late Permian - Early Triassic aged biozones of the Beaufort Group. Outcrops and exposures of the Balfour Formation are found from east of 24 degrees in the highest mountainous escarpments between Beaufort West and Fraserburg, but most notably in the Winterberg and Sneeuberg mountain ranges near Cradock, the Baviaanskloof river valley, Graaff-Reniet and Nieu Bethesda in the Eastern Cape, and in the southern Free State province.

<span class="mw-page-title-main">Katberg Formation</span> Geological formation in the Beaufort Group of the Karoo Supergroup in South Africa

The Katberg Formation is a geological formation that is found in the Beaufort Group, a major geological group that forms part of the greater Karoo Supergroup in South Africa. The Katberg Formation is the lowermost geological formation of the Tarkastad Subgroup which contains the Lower to Middle Triassic-aged rocks of the Beaufort Group. Outcrops and exposures of the Katberg Formation are found east of 24 degrees onwards and north of Graaff-Reniet, Nieu Bethesda, Cradock, Fort Beaufort, Queensdown, and East London in the south, and ranges as far north as Harrismith in deposits that form a ring around the Drakensberg mountain ranges.

<span class="mw-page-title-main">Middleton Formation</span> Late middle Permian geological formation in the Eastern Cape

The Middleton Formation is a geological formation that extends through the Northern Cape, Western Cape, and Eastern Cape provinces of South Africa. It overlies the lower Abrahamskraal Formation, and is the eastern correlate, East of 24ºE, of the Teekloof Formation. Outcrops and exposures of the Middleton Formation range from Graaff-Reinet in the Eastern Cape onwards. The Middleton Formation's type locality lies near the small hamlet, Middleton, approximately 25 km south of Cookhouse. Other exposures lie in hillsides along the Great Fish River in the Eastern Cape. The Middleton Formation forms part of the Adelaide Subgroup of the Beaufort Group, which itself forms part of the Karoo Supergroup.

<span class="mw-page-title-main">Teekloof Formation</span> Late Permian geological formation that forms part of the Beaufort Group of South Africa

The Teekloof Formation is a geological formation that forms part of the Beaufort Group, one of the five geological groups that comprises the Karoo Supergroup in South Africa. The Teekloof Formation is the uppermost formation of Adelaide Subgroup deposits West of 24ºE and contains Middle to Late Permian-aged deposits and four biozones of the Beaufort Group. It overlies the Abrahamskraal Formation. The Teekloof Formation does not underlie other units other than the younger Karoo dolerites and sills that relate to the emplacement of the Early Jurassic Drakensberg Group to the east. Outcrops and exposures of the Teekloof Formation range from Sutherland through the mountain escarpments between Fraserburg and Beaufort West. The northernmost localities of the Teekloof Formation are found by Loxton, Victoria West and Richmond.

References

  1. Br, Turner (2016-09-22). "The stratigraphy and sedimentary history of the Molteno formation in the main Karroo basin of South Africa and Lesotho".{{cite journal}}: Cite journal requires |journal= (help)
  2. Bordy, Emese M.; John Hancox, P.; Rubidge, Bruce S. (2004-03-01). "Fluvial style variations in the Late Triassic–Early Jurassic Elliot formation, main Karoo Basin, South Africa". Journal of African Earth Sciences. 38 (4): 383–400. Bibcode:2004JAfES..38..383B. doi:10.1016/j.jafrearsci.2004.02.004. ISSN   1464-343X.
  3. Rubidge, Bruce S.; Hancox, P. John; Bordy, Emese M. (2005-09-01). "The contact of the Molteno and Elliot formations through the main Karoo Basin, South Africa: a second-order sequence boundary". South African Journal of Geology. 108 (3): 351–364. Bibcode:2005SAJG..108..351B. doi:10.2113/108.3.351. ISSN   1012-0750.
  4. Christie, A.D.M. (1981). "Stratigraphy and sedimentology of the Molteno formation in the Elliot-Indwe area, Cape Province". Masters Dissertation.
  5. Johnson, M. R. (1991-01-01). "Sandstone petrography, provenance and plate tectonic setting in Gondwana context of the southeastern Cape-Karoo Basin". South African Journal of Geology. 94 (2–3): 137–154. ISSN   1012-0750.
  6. B, Cairncross (2016-09-22). "Depositional framework and control of coal distribution and quality, Van Dyks Drift area Northern Karoo basin".{{cite journal}}: Cite journal requires |journal= (help)
  7. Smith, R.M.H., Eriksson, P.G. and Botha, W.J. (1993). "A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa. Journal of African Earth Sciences (and the Middle East), 16(1–2), pp.143–169". Journal of African Earth Sciences (and the Middle East). 16 (1–2): 143–169. Bibcode:1993JAfES..16..143S. doi:10.1016/0899-5362(93)90164-L.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Smith, R. M. H.; Eriksson, P. G.; Botha, W. J. (1993-01-01). "A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa". Journal of African Earth Sciences (and the Middle East). Geology and Development in Southern Africa. 16 (1): 143–169. Bibcode:1993JAfES..16..143S. doi:10.1016/0899-5362(93)90164-L. ISSN   0899-5362.
  9. Turner, B. R. (1977-12-01). "Fluviatile cross-bedding patterns in the Upper Triassic Molteno Formation of the Karoo (Gondwana) Supergroup in South Africa and Lesotho". South African Journal of Geology. 80 (3): 241–252. ISSN   1012-0750.
  10. B, Cairncross (2016-09-22). "Depositional framework and control of coal distribution and quality, Van Dyks Drift area Northern Karoo basin".{{cite journal}}: Cite journal requires |journal= (help)
  11. Buhmann, D.; Heinemann, M. (1987). "Coal-tonsteins from the Molteno formation of the Maluti district, Transkei". S. Afr. J. Geol. 90 (3): 296–304. ISSN   0371-7208.
  12. Rubidge, B. S.; Hancox, P. J.; Catuneanu, O. (1998-12-01). "Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa". Basin Research. 10 (4): 417–439. Bibcode:1998BasR...10..417C. doi:10.1046/j.1365-2117.1998.00078.x. ISSN   1365-2117. S2CID   56420970.
  13. Cairncross, B. and Anderson, J.M. (1995). "Palaeoecology of the Triassic Molteno formation, Karoo basin, south Africa-sedimentological and palaeontological evidence. South African Journal of Geology, 98(4), pp.452–478" (PDF).{{cite web}}: CS1 maint: multiple names: authors list (link)
  14. Eriksson, P.G. (1984). "A palaeoenvironmental analysis of the Molteno Formation in the Natal Drakensberg. South African Journal of Geology, 87(3), pp.237–244" (PDF).
  15. Anderson, H.M. (1974). "A brief review of the flora of the Molteno Formation (Triassic), South Africa". ResearchGate. Retrieved 2019-02-07.
  16. Anderson, John Malcolm; Anderson, Heidi M. (1983-06-01). Palaeoflora of Southern Africa. CRC Press. ISBN   9789061912835.
  17. Anderson, John Malcolm; Anderson, Heidi M. (1983-06-01). Palaeoflora of Southern Africa. CRC Press. ISBN   9789061912835.
  18. Anderson, H.M. and Anderson, J.M., 1997. Why not look for proangiosperms in the Molteno Formation. In Proceedings 4th European Palaeobotanical and Palynological Conference. Meded. Nederl. Inst. Toegep. Geowetens. TNO (Vol. 58, pp. 73–80).
  19. Bamford, Marion K. (2004-01-01). "Diversity of the Woody Vegetation of Gondwanan Southern Africa". Gondwana Research. 7 (1): 153–164. Bibcode:2004GondR...7..153B. doi:10.1016/S1342-937X(05)70314-2. ISSN   1342-937X.
  20. Anderson, Heidi M.; Anderson, John M.; Scott, Andrew C. (2004-05-01). "Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa". Journal of the Geological Society. 161 (3): 401–410. Bibcode:2004JGSoc.161..401S. doi:10.1144/0016-764903-118. ISSN   0016-7649. S2CID   129630181.
  21. Rossouw, G. J.; Shone, Russell W.; Kitching, James W.; Raath, Michael A. (1990). "Dinosaur tracks in Triassic Molteno sediments: the earliest evidence of dinosaurs in South Africa?". Palaeontologia Africana. ISSN   0078-8554.
  22. Catuneanu, Octavian; Bordy, Emese M. (2002-03-01). "Sedimentology of the Beaufort-Molteno Karoo fluvial strata in the Tuli Basin, South Africa". South African Journal of Geology. 105 (1): 51–66. Bibcode:2002SAJG..105...51B. doi:10.2113/1050051. ISSN   1012-0750.