Ufudocyclops

Last updated

Ufudocyclops
Temporal range: Middle Triassic
~ Late Anisian
Ufudocyclops profile.png
Life restoration of Ufudocyclops
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Anomodontia
Clade: Dicynodontia
Family: Stahleckeriidae
Subfamily: Stahleckeriinae
Genus: Ufudocyclops
Kammerer et al., 2019
Species:
U. mukanelai
Binomial name
Ufudocyclops mukanelai
Kammerer et al., 2019

Ufudocyclops is an extinct genus of stahleckeriid dicynodont from the Middle Triassic of South Africa. It was found in the Burgersdorp Formation, part of the uppermost Cynognathus Assemblage Zone of the Beaufort Group in the Karoo Basin. The type and only known species is U. mukanelai. It was a large, beaked herbivore like other Triassic dicynodonts, lacking tusks, and is mostly characterised by unique features of the skull. It is known from three specimens, two of which were previously referred to the Tanzanian dicynodont Angonisaurus . The separation of Ufudocyclops from Angonisaurus indicates that the Middle Triassic fauna of the Beaufort Group in South Africa was not part of a larger shared fauna with those of the Manda Beds in Tanzania, as was previously supposed, and suggests that they were separated as more localised faunas, possibly by geographic barriers or in time. Ufudocyclops then would have been a unique part of the uppermost Cynognathus Assemblage Zone in South Africa. It is also the oldest known member of the family Stahleckeriidae, and implies that the family was already diversifying in the Middle Triassic alongside other kannemeyeriiforms, not just in the Late Triassic after other families died out.

Contents

Description

Scale diagram of Ufudocyclops to a human Ufudocyclops scale.svg
Scale diagram of Ufudocyclops to a human

Ufudocyclops is a large dicynodont, with the largest specimen reconstructed to have an estimated skull length of 35 centimetres (14 in) and the smaller complete holotype skull at approximately 29 centimetres (11 in) long, and an estimated overall body size similar to that of Kannemeyeria . Only skulls and one partial lower jaw are definitively known, and no postcrania from the body has been identified, but it likely resembled other stahleckeriid dicynodonts with a heavily built body, short tail, and stocky limbs, possibly including upright hind-limbs paired with sprawling forelimbs like other large dicynodonts. Like some other stahleckeriids, Ufudocyclops appears to have lacked the tusks characteristic of many other dicynodonts, and was completely toothless. [1] [2]

Skull

The skull of Ufudocyclops superficially resembles Angonisaurus, being relatively tall and notably broad behind the snout, with large, sideways facing eyes and prominent tuskless caniniform processes on the maxilla that project away down and forwards from the snout, flaring out slightly to sides, with blunted tips. The lower surfaces of the maxilla are heavily pitted and rugose, as is the premaxilla and the palate on the roof of the mouth. These textures correspond to the eponymous tortoise-like keratinous beak typical of dicynodonts like Ufudocyclops. The isolated tip of the premaxilla demonstrates that these pits are superficial and do not continue deeper into the bone, as the inner texture of the bone is smooth and tabulate, and so are not foramina. [1]

Like various other dicynodonts, the face is ornamented with bony bosses on the snout around the eyes. The bulbous nasal bones on the top of the snout each sport a single ovoid-shaped boss that overhangs the nostrils and stops just short of the orbits (eye sockets) in front of the eyes. The paired bosses are separated by a 3–7 cm (1–3 in) wide gap of flat, featureless bone between them on top of the snout where the premaxilla and the nasals meet. This is an unusual condition for kannemeyeriiforms, which typically only have a single large boss across the whole surface of the snout. In fact, the bosses are superficially more like those of cryptodonts—a group of Permian dicynodonts unrelated to kannemeyeriiforms—that also had a pair of divided nasal bosses. Similar, but smaller, bosses are found on the prefrontal and postorbital bones, situated around the upper front and back corners of the eyes, respectively. Like the nasal bosses, these two bosses are clearly separated as individual growths, and do not form a continuous rim around the top of the eyes. [1]

The skull of Ufudocyclops is otherwise fairly standard for dicynodonts, however it has some other unique characteristics, such as the form of the jugal bone. In most other dicynodonts the jugal is small and restricted under the eyes, but in Ufudocyclops it extends along much of the lateral (outside) face of the zygomatic arch beneath the eyes and cuts off the maxilla, which usually joins to the squamosal on the zygomatic arch. This unusual setup of the jugal also causes the zygomatic arch to noticeably jut out from the skull under the eyes, compared to other kannemeyeriiforms where it gradually curves out away from the skull. In addition, while most kannemeyeriiforms have the front of the orbits formed only by the jugal and the lacrimal bone, Ufudocyclops also has a very small portion of the maxilla between them too. [1]

Ufudocyclops is also characterised by the unique 'X'-shaped intertemporal bar on the roof of the skull between each temporal fenestra, where the large jaw muscles attached. The bar is broad at the front just behind the eyes and at the back of the skull, while the middle is pinched inwards between the two temporal fenestra, creating the characteristic 'X'-shape. The eponymous pineal foramen on the roof of the skull is also proportionately "enormous" (6 cm (2.4 in) long), implying Ufudocyclops had a very well-developed parietal "third eye". The pineal foramen also has a characteristic depression behind it on the intertemporal bar that is deep and triangular in shape. [1]

Mandible

The lower jaw of Ufudocyclops is only partially known, and is only known from one of the referred specimens. Most of what is preserved consists of the front half of the mandibles, namely the two dentaries, as well as a splenial and portions of the angulars. The jaws are also missing the tip of the mandibular symphysis at the very front where the two jaw bones are fused, but enough is preserved to suggest the lower beak was somewhat squared off. The dentaries are toothless and covered in pits and grooves like those of the upper jaws, typical of the beaked lower jaws of derived dicynodonts. Additionally, parts of both the articular bones were found attached to the quadrates of the skull. These show the typical dicynodont arrangement with two rounded condyles divided by a ridge between them that allows for the lower jaw to slide backwards and forwards during feeding. [1]

History of discovery

The first specimens of Ufudocyclops (BP/1/5530 and BP/1/5531) were discovered by palaeontologist P. John Hancox while fossil collecting in the southern Karoo Basin near Sterkstroom in the Eastern Cape Province, South Africa in an expedition to assess the stratigraphic range of the dicynodont Kannemeyeria. Together with his colleague Bruce S. Rubidge, the skulls were reported in a research letter to South African Journal of Science in February 1994, where the fossils were recognised as a third distinct genus of dicynodont from the Cynognathus Assemblage Zone (AZ), following Kannemeyeria and Kombuisia . At the time Hancox and Rubidge did not attempt to identify the specimens and simply referred to them as a "tuskless dicynodont". They speculated that large dicynodont postcranial remains from the upper Cynognathus AZ, previously attributed to Kannemeyeria, may have also belonged to their new dicynodont, and that their new dicynodont could be used to further subdivide the Cynognathus AZ above the range of Kannemeyeria. [3]

Hancox and Rubidge later briefly described the specimens in August 1996, and then again in more detail in May 2013, referring them both times to the Tanzanian dicynodont Angonisaurus after favourably comparing their skulls. However, the South African specimens were not identical to the Tanzanian A. cruickshanki, interpreted as either a difference between species, sexual dimorphism, or intraspecific variation between different populations, so Hancox and Rubidge provisionally diagnosed them as Angonisaurus sp. Nonetheless, they were regarded as the first record of Angonisaurus outside of the Manda Beds in Tanzania. This was suggested to support a shared Middle Triassic fauna between the uppermost Cynognathus AZ (now known as the Ufudocyclops Cricodon Subzone) and the Manda Beds, based on the shared presence of Angonisaurus. [4] [5]

The third and best preserved specimen of Ufudocyclops—BP/1/8208, which would become the type specimen—was not discovered until 2014 and then collected in 2017 as part of a series of joint excavations by the Evolutionary Studies Institute of the University of the Witwatersrand (Johannesburg) and the University of Birmingham (United Kingdom). The skull was found upside down and isolated in a metre thick block of greenish grey fine grained sandstone, alongside the skull of the large cynodont Impidens . The earlier specimens BP/1/5530 and BP/1/5531 were shown to be identical in form to the type specimen of Ufudocyclops, prompting a reinterpretation of the two fossils as specimens of Ufudocyclops, and not Angonisaurus as originally believed. [1]

The genus Ufudocyclops was named from the Xhosa word ufudo, meaning "tortoise", in reference to its toothless, tortoise-like beak, and the Ancient Greek cyclops, referring to the very large size of the pineal foramen ("third eye"). The species is named in honour of Mr. Pepson "Pepsi" Mukanela as recognition for his skills in fossil preparation at the Evolutionary Studies Institute, including his work on the holotype, who had recently retired before its publication. [1] [6] The holotype skull is nearly complete, missing only its left temporal arch and the tips of the caniniform processes. The tip of the snout was also accidentally sawed through during excavation, separating the very front face of the premaxilla from the rest of the skull, but nothing was lost during collection. The condition of the skull is good, preserving much of the surface features including sutures on the skull roof and palate, as well as much of the ornamentation with only some wear on the top of the snout and to the back of the skull. The two referred skulls are much more incomplete and disarticulated, with BP/1/5530 consisting of only a partial skull roof and a single caniniform process, while BP/1/5531 also includes pieces of the palate, braincase and lower jaw.

Classification

Initial examinations of the referred specimens BP/1/5530 and BP/1/5531 identified them as belonging to the genus Angonisaurus. This was argued on the basis of a combination of shared features between these specimens and Angonisaurus thought to be unique to them (although they are now known to be more widespread in Kannemeyeriiformes) [1] rather than shared unique traits. [4] [5] The poor preservation of these specimens made identification difficult, and it wasn't until the discovery of the nearly complete holotype skull that the distinctiveness of Ufudocyclops could be properly appreciated. Interestingly, while not yet recognised as their own genus, the referred specimens of Ufudocyclops were correctly determined to belong to the family Stahleckeriidae, contrasting with associations of Angonisaurus with Shansiodontidae at the time. [4]

Ufudocyclops is distinguished from other kannemeyeriiform dicynodonts, as well as Angonisaurus, by its 'X'-shaped intertemporal bar and deep triangular depression behind the pineal foramen, as well as by the extension of the jugal beneath the eyes and the two distinctly separated nasal bosses. [1]

The relationship of Ufudocyclops with other dicynodonts was tested phylogenetically by Kammerer and colleagues by combining the data from three other recently updated analyses (Angielcyzk & Kammerer 2017, [7] Angielcyzk et al. 2018, [8] and Kammerer 2018 [9] ) and the new information from the holotype of Ufudocyclops. A simplified cladogram, an excerpt from the full analysis, focused on the relationships of Ufudocyclops within Kannemeyeriiformes is shown below: [1]

Skull of Stahleckeria, possibly the closest relative of Ufudocyclops. Stahleckeria potens skull.JPG
Skull of Stahleckeria , possibly the closest relative of Ufudocyclops.
Kannemeyeriiformes

Jimusaria

Gordonia

Rhinodicynodon

Tetragonias

Vinceria

Shansiodon

"Kannemeyeriidae"

Dinodontosaurus

Angonisaurus

Stahleckeriidae

Placeriinae

Stahleckeriinae

Stahleckeria

Ufudocyclops

Sangusaurus

Eubrachiosaurus

Ischigualastia

Jachaleria

Their results were generally similar to previous studies, although notably within Kannemeyeriiformes the family Shansiodontidae was found to be paraphyletic.

Ufudocyclops and Stahleckeria were found to be each other's closest relatives, sharing at least two characteristics between each other. However, Kammerer and colleagues also identified one feature more like those of earlier kannemeyeriiforms, and found that it was almost as equally plausible that Ufudocyclops could be the most basal species of Stahleckeriinae. This would also be consistent with Ufudocyclops being older than all other stahleckeriines, however, the ancestral appearance of stahleckeriids is poorly understood and so it is unclear whether Ufudocyclops is indeed less derived than Stahleckeria and other stahleckeriines. [1]

Palaeoeocology

Ufudocyclops is known only from the uppermost Burgersdorp Formation, and was a part of the youngest subzone of the Cynognathus Assemblage Zone (AZ) fauna. The Cynognathus AZ was previously divided into three informal subzones, simply known as subzones A, B, and C, and were recognised by a characteristic set of fauna in each, as well as shared components throughout them. These subzones were formally defined in 2020 by Hancox and colleagues, who named Subzone C the UfudocyclopsCricodon Subzone in recognition of the unique co-occurrence of Ufudocyclops, endemic to the subzone, and the cynodont Cricodon metabolus. [10] The Cynognathus AZ as a whole has been roughly dated to the Middle Triassic in age, possibly late Anisian. The Burgersdorp Formation is largely made up of maroon clay-mudstones, believed to have been deposited in an environment with a meandering river flowing through it. [5] The unit of rock that preserved the holotype skull of Ufudocyclops grades from cross-bedding and laminated ripples to fine siltstone, and some units also preserve traces of roots. These indicate that the area was part a vegetated floodplain close to flowing water, possibly in a river channel itself or formed as a crevasse splay when the river burst its banks. [1]

The fauna of the UfudocyclopsCricodon Subzone is characterised by Ufudocyclops itself, as well as by the presence of the large mastodonsaurid temnospondyl amphibian Paracyclotosaurus morganorum . Ufudocycylops also coexisted with another large dicynodont that is referred only to Shansiodon sp., as well as various cynodonts including the predatory Cynognathus and the herbivorous Diademodon —both of which are ubiquitous to the entire Cynognathus AZ. It also coexisted with two trirachodontid cynodonts, the large and potentially predatory omnivore Impidens, and a smaller species tentatively referred to Cricodon metabolus. [11] The UfudocyclopsCricodon Subzone directly overlays the older TrirarchodonKannemeyeria Subzone that was characterised by the presence of the eponymous dicynodont Kannemeyeria, which Ufudocyclops had seemingly replaced ecologically as a large browsing herbivore. [1] [10]

Palaeobiogeography

Because specimens of Ufudocyclops were once thought to belong to Angonisaurus, it was believed that the UfudocyclopsCricodon Subzone and the Manda Beds in Tanzania were part of a larger shared fauna distributed throughout Africa during the Middle Triassic, even extending into Antarctica. [5] [12] However, the distinction of Ufudocyclops from Angonisaurus suggests that dicynodonts in Middle Triassic Africa were more divided than had been assumed, separated into different localised faunas and habitats. It is unclear whether Ufudocyclops was geographically restricted to the Karoo Basin from the Manda Beds, or if the two localities were separated in time, but in either case Ufudocyclops was an endemic part of the Karoo dicynodont fauna. [1]

The discovery of Ufudocyclops in the uppermost Karoo Basin also adds to a growing number of stahleckeriids from the Middle Triassic, along with the African genera Zambiasaurus and Sangusaurus . Stahleckeriid dicynodonts were mostly known from the Late Triassic, and had been suggested to have been a 'slow fuse' lineage that radiated only after the older families of kannemeyeriiforms, such as Kannemeyeriidae and Shansiodontidae, had already gone extinct. As the oldest and possibly most basal member of the family, Ufudocyclops demonstrates that the group had already diversified alongside other kannemeyeriiforms. Nonetheless, Ufudocyclops suggests that stahleckeriids were able to replace other kannemeyeriiforms following local ecological turnovers, at least locally in the Karoo Basin, where it replaced Kannemeyeria after the latter had dominated the preceding TrirarchodonKannemeyeria Subzone of the Cynognathus AZ. [1]

Related Research Articles

<i>Kannemeyeria</i> Extinct genus of dicynodonts

Kannemeyeria is a genus of dicynodont that lived during the Anisian age of Middle Triassic period in what is now Africa and South America. The generic name is given in honor of Daniel Rossouw Kannemeyer, the South African fossil collector who discovered the original specimen. It is one of the first representatives of the family, and hence one of the first large herbivores of the Triassic.

<i>Emydops</i> Extinct genus of dicynodonts

Emydops is an extinct genus of dicynodont therapsids from the Middle Permian to Late Permian of what is now South Africa. The genus is generally small and herbivorous, sharing the dicynodont synapomorphy of bearing two tusks. In the following years, the genus grew to include fourteen species. Many of these species were erected on the basis of differences in the teeth and the positioning of the frontal and parietal bones. A 2008 study narrowed Emydops down to two species, E. arctatus and the newly described E. oweni.

<i>Anteosaurus</i> Extinct genus of anteosaurid synapsid from the Permian

Anteosaurus is an extinct genus of large carnivorous dinocephalian synapsid. It lived at the end of the Guadalupian during the Capitanian stage, about 265 to 260 million years ago in what is now South Africa. It is mainly known by cranial remains and few postcranial bones. Measuring 5–6 m (16–20 ft) long and weighing about 600 kg (1,300 lb), Anteosaurus was the largest known carnivorous non-mammalian synapsid and the largest terrestrial predator of the Permian period. Occupying the top of the food chain in the Middle Permian, its skull, jaws and teeth show adaptations to capture large prey like the giants titanosuchids and tapinocephalids dinocephalians and large pareiasaurs.

<i>Cistecephalus</i> Assemblage Zone

The Cistecephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the Teekloof Formation north-west of Beaufort West in the Western Cape, in the upper Middleton and lower Balfour Formations respectively from Colesberg of the Northern Cape to east of Graaff-Reinet in the Eastern Cape. The Cistecephalus Assemblage Zone is one of eight biozones found in the Beaufort Group, and is considered to be Late Permian in age.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

<i>Cynognathus</i> Assemblage Zone Biozone which correlates to the Burgersdorp Formation of the Beaufort Group

The Cynognathus Assemblage Zone is a tetrapod biozone utilized in the Karoo Basin of South Africa. It is equivalent to the Burgersdorp Formation, the youngest lithostratigraphic formation in the Beaufort Group, which is part of the fossiliferous and geologically important Karoo Supergroup. The Cynognathus Assemblage Zone is the youngest of the eight biozones found in the Beaufort Group, and is considered to be late Early Triassic (Olenekian) to early Middle Triassic (Anisian) in age. The name of the biozone refers to Cynognathus crateronotus, a large and carnivorous cynodont therapsid which occurs throughout the entire biozone.

<i>Endothiodon</i> Extinct genus of dicynodonts

Endothiodon is an extinct genus of large dicynodont from the Late Permian. Like other dicynodonts, Endothiodon was an herbivore, but it lacked the two tusks that characterized most other dicynodonts. The anterior portion of the upper and lower jaw are curved upward, creating a distinct beak that is thought to have allowed them to be specialized grazers.

Angonisaurus is an extinct genus of kannemeyeriiform dicynodont from the Middle Triassic of Africa between 247 and 242 million years ago. Only one species, Angonisaurus cruickshanki has been assigned to this genus. This genus is thought to have been widely spread but rare in southern Gondwana. Though few in number, the fossil record of Angonisaurus cruickshanki contains multiple specimens giving it a measurable stratigraphic range. Sexually dimorphic features are found in Angonisaurus which include presence or absence of tusks and difference is size and robustness of the temporal arch and the rostral.

<i>Dicynodontoides</i> Extinct genus of dicynodonts

Dicynodontoides is a genus of small to medium-bodied, herbivorous, emydopoid dicynodonts from the Late Permian. The name Dicynodontoides references its “dicynodont-like” appearance due to the caniniform tusks featured by most members of this infraorder. Kingoria, a junior synonym, has been used more widely in the literature than the more obscure Dicynodontoides, which is similar-sounding to another distantly related genus of dicynodont, Dicynodon. Two species are recognized: D. recurvidens from South Africa, and D. nowacki from Tanzania.

<i>Microgomphodon</i> Genus of therapsid from the Middle Triassic of southern Africa

Microgomphodon is an extinct genus of therocephalian therapsid from the Middle Triassic of South Africa and Namibia. Currently only one species of Microgomphodon, M. oligocynus, is recognized. With fossils present in the Cynognathus Assemblage Zone (CAZ) of the Burgersdorp Formation in South Africa and Omingonde Formation of Namibia and ranging in age from late Olenekian to Anisian, it is one of the most geographically and temporally widespread therocephalian species. Moreover, its occurrence in the upper Omigonde Formation of Namibia makes Microgomphodon the latest-surviving therocephalian. Microgomphodon is a member of the family Bauriidae and a close relative of Bauria, another South African bauriid from the CAZ. Like other bauriids, it possesses several mammal-like features such as a secondary palate and broad, molar-like postcanine teeth, all of which evolved independently from mammals.

<i>Pelanomodon</i> Extinct genus of dicynodonts

Pelanomodon is an extinct genus of dicynodont therapsids that lived in the Late Permian period. Fossil evidence of this genus is principally found in the Karoo Basin of South Africa, in the Dicynodon Assemblage Zone. Lack of fossil record after the Late Permian epoch suggests that Pelanomodon fell victim to the Permian-Triassic extinction event.

<i>Lumkuia</i> Extinct genus of cynodonts

Lumkuia is an extinct genus of cynodonts, fossils of which have been found in the Cynognathus Assemblage Zone of the Beaufort Group in the South African Karoo Basin that date back to the early Middle Triassic. It contains a single species, Lumkuia fuzzi, which was named in 2001 on the basis of the holotype specimen BP/1/2669, which can now be found at the Bernard Price Institute in Johannesburg, South Africa. The genus has been placed in its own family, Lumkuiidae. Lumkuia is not as common as other cynodonts from the same locality such as Diademodon and Trirachodon.

<i>Bulbasaurus</i> Extinct genus of dicynodonts

Bulbasaurus is an extinct genus of dicynodont that is known from the Lopingian epoch of the Late Permian period of what is now South Africa, containing the type and only species B. phylloxyron. It was formerly considered as belonging to Tropidostoma; however, due to numerous differences from Tropidostoma in terms of skull morphology and size, it has been reclassified the earliest known member of the family Geikiidae, and the only member of the group known from the Tropidostoma Assemblage Zone. Within the Geikiidae, it has been placed close to Aulacephalodon, although a more basal position is not implausible.

<i>Pentasaurus</i> Genus of dicynodont therapsid from the late Triassic of South Africa

Pentasaurus is an extinct genus of dicynodont of the family Stahleckeriidae, closely related to the well known Placerias. It was found in the Lower Elliot Formation of South Africa, dated to the Norian of the Late Triassic period. The genus contains the type and only species, Pentasaurus goggai. Pentasaurus is named after the ichnogenus Pentasauropus, fossil footprints that were originally described from the lower Elliot Formation in 1970 decades before the body fossils of Pentasaurus itself were recognised. Pentasauropus footprints were likely made by dicynodonts, and in South Africa Pentasaurus itself was the likely trackmaker. The name reflects the fact that a large dicynodont was predicted to have existed in the lower Elliot Formation before any body fossils were recognised, and so Pentasaurus was named after its probable footprints. This is a reversal of the more typical occurrence where fossil footprints are named after their presumed trackmakers. The name of the species honours its collector Alfred Brown, nicknamed "Gogga", which means "bug" in Afrikaans.

<i>Thliptosaurus</i> Extinct genus of dicynodonts

Thliptosaurus is an extinct genus of small kingoriid dicynodont from the latest Permian period of the Karoo Basin in KwaZulu-Natal, South Africa. It contains the type and only known species T. imperforatus. Thliptosaurus is from the upper Daptocephalus Assemblage Zone, making it one of the youngest Permian dicynodonts known, living just prior to the Permian mass extinction. It also represents one of the few small bodied dicynodonts to exist at this time, when most other dicynodonts had large body sizes and many small dicynodonts had gone extinct. The unexpected discovery of Thliptosaurus in a region of the Karoo outside of the historically sampled localities suggests that it may have been part of an endemic local fauna not found in these historic sites. Such under-sampled localities may contain 'hidden diversities' of Permian faunas that are unknown from traditional samples. Thliptosaurus is also unusual for dicynodonts as it lacks a pineal foramen, suggesting that it played a much less important role in thermoregulation than it did for other dicynodonts.

<i>Repelinosaurus</i> Extinct genus of dicynodonts

Repelinosaurus is an extinct genus of dicynodont from the Purple Claystone Formation of Luang Prabang in Laos, Southeast Asia that lived at around the time of the Permian-Triassic boundary and possibly dates to the earliest Early Triassic. Its type and only known species is R. robustus. Repelinosaurus was originally described as the earliest known kannemeyeriiform dicynodont, supporting the idea of a more rapid radiation of the Triassic kannemeyeriiform dicynodonts during the Early Triassic following the Permian mass extinction. However, it may alternatively be more closely related to the Permian Dicynodon. The discovery of a potential early kannemeyeriiform in an understudied locality like Laos highlights the importance of such places in dicynodont research, which has been largely focused on historically important localities such as the Karoo Basin of South Africa.

Kembawacela is an extinct genus of cistecephalid dicynodont from the Late Permian of East Africa. The genus contains two known species, the type species Kembawacela kitchingi from the Madumabisa Mudstone Formation of Zambia described in 2019, and a second species, K. yajuwayeyi, from the Chiweta Beds of Malawi described in 2022. Like other cistecephalids, Kembawacela was specialised for a fossorial, burrowing lifestyle similar to modern day moles. It is unique amongst cistecephalids for the presence of a pair of tusks in the upper jaw, characteristic of many other dicynodonts but lost in other cistecephalids. It is likely that Kembawacela was a locally endemic species of cistecephalid in the Luangwa Basin of Zambia.

Vetusodon is an extinct genus of cynodonts belonging to the clade Epicynodontia. It contains one species, Vetusodon elikhulu, which is known from four specimens found in the Late Permian Daptocephalus Assemblage Zone of South Africa. With a skull length of about 18 centimetres (7.1 in), Vetusodon is the largest known cynodont from the Permian. Through convergent evolution, it possessed several unusual features reminiscent of the contemporary therocephalian Moschorhinus, including broad, robust jaws, large incisors and canines, and small, single-cusped postcanine teeth.

<i>Impidens</i> Extinct genus of cynodonts

Impidens is an extinct genus of large omnivorous cynodont from the Triassic of South Africa and Antarctica. Its type and only species is Impidens hancoxi. Impidens inhabited high-latitude environments of southern Gondwana during the Middle Triassic, where it was probably the apex predator.

Phorcys is an extinct genus of gorgonopsian that lived during the Middle Permian period (Guadalupian) of what is now South Africa. It is known from two specimens, both portions from the back of the skull, that were described and named in 2022 as a new genus and species P. dubei by Christian Kammerer and Bruce Rubidge. The generic name is from Phorcys of Greek mythology, the father of the Gorgons from which the gorgonopsians are named after, and refers to its status as one of the oldest representatives of the group in the fossil record. Phorcys was recovered from the lowest strata of the Tapinocephalus Assemblage Zone (AZ) of the Beaufort Group, making it one of the oldest known gorgonopsians in the fossil record—second only to fragmentary remains of an indeterminate gorgonopsian from the older underlying Eodicynodon Assemblage Zone.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Christian F. Kammerer; Pia A. Viglietti; P. John Hancox; Richard J. Butler; Jonah N. Choiniere (2019). "A new kannemeyeriiform dicynodont (Ufudocyclops mukanelai, gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone, Triassic of South Africa, with implications for biostratigraphic correlation with other African Triassic Faunas" (PDF). Journal of Vertebrate Paleontology . 39 (2): e1596921. Bibcode:2019JVPal..39E6921K. doi:10.1080/02724634.2019.1596921. ISSN   1937-2809. S2CID   181994969.
  2. Kemp, T.S. (1982). "Anomodonts". Mammal-like reptiles and the origin of mammals. Academic Press. ISBN   0124041205.
  3. Hancox, P. J.; Rubidge, B.S. (1994). "A new dicynodont therapsid from South Africa: implications for the biostratigraphy of the Upper Beaufort (Cynognathus Assemblage Zone)" (PDF). South African Journal of Science . 90 (2): 98–99. ISSN   1996-7489.
  4. 1 2 3 Hancox, P. J.; Rubidge, B.S. (1996). "The first specimen of the mid-Triassic dicynodont Angonisaurus from the Karoo of South Africa: implications for the dating and biostratigraphy of the Cynognathus Assemblage Zone, Upper Beaufort Group" (PDF). South African Journal of Science . 92 (8): 391–392. ISSN   1996-7489.
  5. 1 2 3 4 Hancox, P.J.; Angielcyzk, K.D.; Rubidge, B.S. (2013). "Angonisaurus and Shansiodon', dicynodonts (Therapsida, Anomodontia) from Subzone C of the Cynognathus Assemblage Zone (Middle Triassic) of South Africa". Journal of Vertebrate Paleontology . 33 (3): 655–676. Bibcode:2013JVPal..33..655H. doi:10.1080/02724634.2013.723551. S2CID   128538910.
  6. Christian F. Kammerer [@Synapsida] (21 May 2019). "The genus is named after the Xhosa word for tortoise (ufudo; cognate in many Bantu languages) and cyclops in reference to the gigantic pineal foramen in this taxon. Species named to honour recently-retired ace preparator Pepson "Pepsi" Mukanela of the ESI lab" (Tweet). Retrieved 2 June 2019 via Twitter.
  7. Angielczyk, K.D.; Kammerer, C.F. (2017). "The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia)". Papers in Palaeontology . 3 (4): 513–545. doi:10.1002/spp2.1087. S2CID   134092461.
  8. Angielczyk, Kenneth; Hancox, John; Nabavizadeh, Ali (2018). "A redescription of the Triassic kannemeyeriiform dicynodont Sangusaurus (Therapsida, Anomodontia), with an analysis of its feeding system". Journal of Vertebrate Paleontology. 37 (supplement to issue 6 – Society of Vertebrate Paleontology Memoir 17: Vertebrate and Climatic Evolution in the Triassic Rift Basins of Tanzania and Zambia, ed. by Christian A. Sidor & Sterling J. Nesbitt): 189–227. doi:10.1080/02724634.2017.1395885. S2CID   90116315.
  9. Kammerer, Christian F. (2018). "The first skeletal evidence of a dicynodont from the lower Elliot Formation of South Africa" (PDF). Palaeontologia Africana. 52: 102–128. ISSN   2410-4418.
  10. 1 2 Hancox, P. J.; Neveling, J.; Rubidge, B. S. (2020). "Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa". South African Journal of Geology. 123 (2): 217–238. Bibcode:2020SAJG..123..217H. doi:10.25131/sajg.123.0016. S2CID   225828531.
  11. Tolchard, F.; Kammerer, C. F.; Butler, R. J.; Hendrickx, C.; Benoit, J.; Abdala, F.; Choiniere, J. N. (2021). "A new large gomphodont from the Triassic of South Africa and its implications for Gondwanan biostratigraphy". Journal of Vertebrate Paleontology. 41 (2): e1929265. Bibcode:2021JVPal..41E9265T. doi:10.1080/02724634.2021.1929265. S2CID   237517965.
  12. Cidor, S.A.; Smith, R.M.H.; Huttenlocker, H.A.; Peecook, B.R. (2014). "New Middle Triassic tetrapods from the upper Fremouw Formation of Antarctica and their depositional setting". Journal of Vertebrate Paleontology . 34 (4): 793–801. Bibcode:2014JVPal..34..793S. doi:10.1080/02724634.2014.837472. S2CID   128981733.