Dromasauria

Last updated
"Dromasauria"
Temporal range: Middle Permian - Late Permian
Galechirus1DB.jpg
Life restoration of Galechirus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Anomodontia
Informal group: Dromasauria
Broom, 1907
Included genera

"Dromasaurs" are an artificial grouping of small anomodont therapsids from the Middle and Late Permian of South Africa. They represent either a paraphyletic grade or a polyphyletic grouping of small non-dicynodont basal anomodonts rather than a clade, and as such are considered an invalid group today. "Dromasaurs" were historically united by their superficially similar appearances that were unlike other known anomodonts. They are all small in size with slender limbs and long tails, and have short skulls with very large eye sockets. "Dromasauria" (sometimes also known as "Dromasauroidea") traditionally includes three genera, all from the Karoo Supergroup of South Africa: Galepus , Galechirus , and Galeops . These genera have sometimes been divided into two subgroups, the monotypic family Galeopidae (containing only Galeops) and the Galechiridae for Galechiris and Galepus. [1]

Despite their superficial similarities, "Dromasauria" is not recognised in modern cladistics-based taxonomy (where groups are based upon shared common ancestry). Rather than forming their own clade, phylogenetic analyses have found the various "dromasaurs" to be distributed individually throughout the evolutionary tree of basal anomodonts. In particular, Galeops is notably found to consistently be much closer to the dicynodonts than to the other "dromasaurs". Some earlier studies have inferred or even recovered a close sister-relationship between Galechirus and Galepus in a clade, to which the name Galechiridae has sometimes been applied. [2] [3] However, more recent phylogenetic analyses incorporating more data and more complete samples of basal anomodonts have found them at separate points on the tree too. [4]

The cladogram below depicts the results of the phylogenetic analysis from Angielczyk and Kammerer (2017), with each of the three "dromasaurs" highlighted in light green: [4]

Anomodontia

Biseridens

Venyukovioidea

Suminia

Otsheria

Ulemica

Chainosauria

Galepus

Anomocephaloidea

Tiarajudens

Anomocephalus

Patranomodon

Galechirus

Galeops

Dicynodontia

   "Dromasaurs"
Galepus. Galepus.jpg
Galepus .

See also

Related Research Articles

<span class="mw-page-title-main">Dicynodont</span> Extinct clade of therapsids

Dicynodontia is an extinct clade of anomodonts, an extinct type of non-mammalian therapsid. Dicynodonts were herbivores that typically bore a pair of tusks, hence their name, which means 'two dog tooth'. Members of the group possessed a horny, typically toothless beak, unique amongst all synapsids. Dicynodonts first appeared in Southern Pangaea during the mid-Permian, ca. 270–260 million years ago, and became globally distributed and the dominant herbivorous animals in the Late Permian, ca. 260–252 Mya. They were devastated by the end-Permian Extinction that wiped out most other therapsids ca. 252 Mya. They rebounded during the Triassic but died out towards the end of that period. They were the most successful and diverse of the non-mammalian therapsids, with over 70 genera known, varying from rat-sized burrowers to elephant-sized browsers.

<span class="mw-page-title-main">Anomodont</span> Suborder of stem-mammals

Anomodontia is an extinct group of non-mammalian therapsids from the Permian and Triassic periods. By far the most speciose group are the dicynodonts, a clade of beaked, tusked herbivores. Anomodonts were very diverse during the Middle Permian, including primitive forms like Anomocephalus and Patranomodon and groups like Venyukovioidea and Dromasauria. Dicynodonts became the most successful and abundant of all herbivores in the Late Permian, filling ecological niches ranging from large browsers down to small burrowers. Few dicynodont families survived the Permian–Triassic extinction event, but one lineage (Kannemeyeriiformes) evolved into large, stocky forms that became dominant terrestrial herbivores right until the Late Triassic, when changing conditions caused them to decline, finally going extinct during the Triassic–Jurassic extinction event.

<i>Cistecephalus</i> Extinct genus of dicynodonts

Cistecephalus is an extinct genus of dicynodont therapsid from the Late Permian of southern Africa. It was a small, specialised, burrowing dicynodont, possibly with habits similar to a modern mole. The head was flattened and wedge-shaped, the body long, and the forelimbs very strong, with similarities in structure to the forelimb of modern burrowing mammals.

<i>Diictodon</i> Extinct genus of dicynodonts

Diictodon is an extinct genus of pylaecephalid dicynodont. These mammal-like synapsids lived during the Late Permian period, approximately 255 million years ago. Fossils have been found in the Cistecephalus Assemblage Zone of the Madumabisa Mudstone of the Luangwa Basin in Zambia and the Tropidostoma Assemblage Zone of the Teekloof Formation, Tapinocephalus Assemblage Zone of the Abrahamskraal Formation, Dicynodon Assemblage Zone of the Balfour Formation, Cistecephalus Assemblage Zone of the Middleton or Balfour Formation of South Africa and the Guodikeng Formation of China. Roughly half of all Permian vertebrate specimens found in South Africa are those of Diictodon. This small herbivorous animal was one of the most successful synapsids in the Permian period.

<i>Dicynodon</i> Extinct genus of dicynodonts

Dicynodon is a genus of dicynodont therapsid that flourished during the Upper Permian period. Like all dicynodonts, it was herbivorous animal. This synapsid was toothless, except for prominent tusks, hence the name. It probably cropped vegetation with a horny beak, much like a tortoise, while the tusks may have been used for digging up roots and tubers.

<i>Biseridens</i> Extinct genus of therapsids

Biseridens is an extinct genus of anomodont therapsid, and one of the most basal anomodont genera known. Originally known from a partial skull misidentified as an eotitanosuchian in 1997, another well-preserved skull was found in the Qingtoushan Formation in the Qilian Mountains of Gansu, China, in 2009 that clarified its relationships to anomodonts, such as the dicynodonts.

<i>Dicynodontoides</i> Extinct genus of dicynodonts

Dicynodontoides is a genus of small to medium-bodied, herbivorous, emydopoid dicynodonts from the Late Permian. The name Dicynodontoides references its “dicynodont-like” appearance due to the caniniform tusks featured by most members of this infraorder. Kingoria, a junior synonym, has been used more widely in the literature than the more obscure Dicynodontoides, which is similar-sounding to another distantly related genus of dicynodont, Dicynodon. Two species are recognized: D. recurvidens from South Africa, and D. nowacki from Tanzania.

<i>Daptocephalus</i> Extinct genus of dicynodonts

Daptocephalus is an extinct genus of non-mammalian synapsid anomodont dicynodont, it which was found in Late Permian strata, in a biozone known precisely for the presence of fossils of this dicynodont, the Daptocephalus Assemblage Zone, in the Karoo Basin in South Africa. An additional species, D. huenei, is known from the Usili Formation in Tanzania and was formerly assigned to the genus Dicynodon before a study in 2019 recognised that the type specimen belonged to Daptocephalus.

<span class="mw-page-title-main">Lystrosauridae</span> Extinct family of dicynodonts

Lystrosauridae is a family of dicynodont therapsids from the Permian and Triassic time periods. It includes two genera, Lystrosaurus and Kwazulusaurus. Kwazulusaurus includes a single species, K. shakai, from the Late Permian of South Africa and Lystrosaurus includes many species from the Late Permian and Early Triassic of South Africa, India, and Antarctica.

<span class="mw-page-title-main">Venyukovioidea</span> Extinct infraorder of therapsids

Venyukovioidea is an infraorder of anomodont therapsids related to dicynodonts from the Permian of Russia. They have also been known as 'Venjukovioidea', as well as by the similar names 'Venyukoviamorpha' or 'Venjukoviamorpha' in literature. This in part owes to a misspelling by Russian palaeontologist Ivan Efremov in 1940 when he mistakenly spelt Venyukovia, the namesake of the group, with a 'j' instead of a 'y', which permeated through subsequent therapsid literature before the mistake was caught and corrected. The order Ulemicia has also been coined for a similar taxonomic concept in Russian scientific literature, which notably excludes Suminia and Parasuminia.

<span class="mw-page-title-main">Chainosauria</span> Extinct clade of therapsids

Chainosauria is a large and speciose clade of anomodont therapsid that includes the highly diverse dicynodonts and a small number of closely related basal genera —although the total composition and taxonomic scope of Chainosauria is in flux. Chainosauria was named in 1923 to group together the dicynodonts and their close relatives, namely three small anomodont genera from South Africa that made up the now defunct group 'Dromasauria'. The name soon fell into disuse, however, as it was functionally replaced by Anomodontia. Chainosauria was later revived cladistically in 2009, preserving the association of dicynodonts and the 'dromasaurs' and has since served in effect as both a cladistic and a biogeographic counterpart to the Laurasian venyukovioids, with early chainosaurs appearing to have been a Gondwanan radiation.

<span class="mw-page-title-main">Pylaecephalidae</span> Extinct family of dicynodonts

Pylaecephalidae is a family of dicynodont therapsids that includes Diictodon, Robertia, and Prosictodon from the Permian of South Africa. Pylaecephalids were small burrowing dicynodonts with long tusks. The family was first named in 1934 and was redefined in 2009. Diictodontidae and Robertiidae are considered junior synonyms of Pylaecephalidae; although Pylaecephalus itself is considered a junior synonym of Diictodon, the name Pylaecephalidae predates these names and therefore takes priority.

<span class="mw-page-title-main">Dicynodontoidea</span> Extinct infraorder of dicynodonts

Dicynodontoidea is an infraorder of dicynodont therapsids that includes the famous dicynodont Dicynodon, Lystrosaurus and the Triassic Kannemeyeriiformes, as well as numerous other closely related species. The name was coined by American paleontologist Everett C. Olson in 1941 as an infraorder, despite using the typical "-oidea" suffix of superfamilies, and was later redefined under a phylogenetic context in 2009 by paleontologist Christian F. Kammerer.

Syops is an extinct genus of dicynodont therapsid. The type species S. vanhoepeni was first named in 1938 as Dicynodon vanhoepeni. Fossils of the genus have been found in the Cistecephalus Assemblage Zone in the Usili Formation of the Ruhuhu Basin, Tanzania and the Upper Madumabisa Mudstone Formation of the Luangwa Basin, Zambia. Its phylogenetic placement is somewhat uncertain, with multiple different studies finding it as either a basal geikiid, rhachiocephalid a dicynodontoid more derived than the most basal genera but less derived than Lystrosauridae, or a lystrosaurid.

<span class="mw-page-title-main">Therochelonia</span> Extinct clade of dicynodonts

Therochelonia is a group of dicynodont therapsids. The group was named by British paleontologist Harry Seeley in 1894 and fell into disuse in the following century. Therochelonia was redefined as a node-based clade in 2009. It is defined as the last common ancestor of Cistecephalus microrhinus and Dicynodon lacerticeps, and all of its descendants. Below is a simplified cladogram from Kammerer et al. (2011) showing the phylogenetic placement of Therochelonia:

Sintocephalus is an extinct genus of dicynodont therapsid from the Late Permian of South Africa. Fossils are known from the Cistecephalus Assemblage Zone of the Beaufort Group. The type species of Sintocephalus, S. alticeps, was first named in 1913 as a species of Dicynodon. The genus was erected in 1934, but in subsequent years its species were often regarded as members of other dicynodont genera.

<span class="mw-page-title-main">Bidentalia</span> Extinct clade of dicynodonts

Bidentalia is a group of dicynodont therapsids. Bidentalia was one of the first names used to describe dicynodonts; the group was established in 1876, while the name "bidentals" dates back as far as 1845. With the increasing prominence of phylogenetics, the group was redefined as a clade in 2009. Bidentalia is now considered a stem-based taxon that includes all taxa more closely related to Aulacephalodon bainii and Dicynodon lacerticeps than Emydops arctatus.

<span class="mw-page-title-main">Kistecephalia</span> Extinct clade of dicynodonts

Kistecephalia is a clade of dicynodont therapsids. The group was first named in 1894, and was reinstated as a clade in 2009. Kistecephalia is a stem-based taxon defined as all taxa more closely related to Cistecephalus microrhinus than Emydops arctatus. It includes the families Myosauridae, Kingoriidae, and Cistecephalidae and is part of the larger group Emydopoidea. Kistecephalians were small in comparison to other dicynodonts. One group of kistecephalians, the cistecephalids, are thought to have been burrowers. Below is a cladogram from Kammerer et al. (2011) showing the phylogenetic relationships of kistecephalians:

<span class="mw-page-title-main">Anomocephaloidea</span> Extinct clade of therapsids

Anomocephaloidea is a clade of basal anomodont therapsids related to the dicynodonts known from what is now South Africa and Brazil during the Middle Permian. It includes only two species, Anomocephalus africanus from the Karoo Basin of South Africa and Tiarajudens eccentricus from the Paraná Basin of Brazil. Anomocephaloidea was named in 2011 with the discovery of Tiarajudens, although Anomocephalus itself has been known since 1999.

Parasumina is an extinct genus of anomodont known from the late Capitanian age at the end of the middle Permian period of European Russia. The type and only species is Parasuminia ivakhnenkoi. It was closely related to Suminia, another Russian anomodont, and was named for its resemblance. Little is known about Parasuminia as the only fossils are of fragmentary pieces of the skull and jaw, but the known remains suggest that its head and jaws were deeper and more robust than those of Suminia, and with shorter, stouter teeth. However, despite these differences they appear to have been similar animals with a similarly complex method of processing vegetation.

References

  1. Broom, R. (1912). "On some new Fossil Reptiles from the Permian and Triassic Beds of South Africa". Proceedings of the Zoological Society of London. 84 (4): 859–876. doi:10.1111/j.1469-7998.1912.tb07564.x.
  2. Rubidge, B. S.; Hopson, J. A. (1996). "A primitive anomodont therapsid from the base of the Beaufort Group (Upper Permian) of South Africa". Zoological Journal of the Linnean Society. 117 (2): 115–139. doi:10.1111/j.1096-3642.1996.tb02152.x.
  3. Kammerer, C. F.; Angielczyk, K. D.; Fröbisch, J. (2011). "A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy". Journal of Vertebrate Paleontology . 31 (Suppl. 1): 1–158. doi:10.1080/02724634.2011.627074. S2CID   84987497.
  4. 1 2 Angielczyk, K. D.; Kammerer, C. F. (2017). "The cranial morphology, phylogenetic position and biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen (Therapsida, Anomodontia)". Papers in Palaeontology. 3 (4): 513–545. doi:10.1002/spp2.1087. S2CID   134092461.