Taoheodon

Last updated

Taoheodon
Temporal range: Late Permian
~ Wuchiapingian
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Anomodontia
Clade: Dicynodontia
Infraorder: Dicynodontoidea
Genus: Taoheodon
Liu, 2020
Species:
T. baizhijuni
Binomial name
Taoheodon baizhijuni
Liu, 2020

Taoheodon is an extinct genus of dicynodont therapsid from the Sunjiagou Formation in the Shanxi province of China, dated to the Wuchiapingian age of the Late Permian. Its type and only known species is T. baizhijuni. Taoheodon was a close relative of the well known Dicynodon , and may represent a biogeographical link between the South African Dicynodon and similar dicynodonts found in Laos.

Contents

Description

Taoheodon was a medium-sized dicynodont (basal skull length over 10 centimetres (3.9 in) long) currently only known from an incomplete skull and lower jaw. Based on the anatomy of other closely related dicynodonts such as Dicynodon, Taoheodon was probably a squat, sprawling quadruped with a short tail and a proportionally large head. Like other dicynodonts, Taoheodon was almost entirely toothless, sporting only a pair of tusks and a tortoise-like beak. [1] [2]

Skull

Like other dicynodonts, Taoheodon had a short skull with large temporal fenestra at the back, large orbits and a short snout, which in Taoheodon was proportionately short even for a dicynodont. Its skull is slightly longer than wide, with elongated temporal fenestra. The external nostril is rounded and not especially large for a dicynodont, but the area of bone behind and beneath it is hollowed out and concave compared to the rest of the snout. The nasal bones along the roof of the snout are relatively flat, but are nonetheless rugosely textured and bore a single weakly developed boss of tough skin or keratin on top of the snout. Likewise, the lacrimal and prefrontal bone form a distinct boss that bulges out to the side in front of each eye. By comparison, the postorbital bar behind the eyes is smooth and unornamented. The caniniform process housing the tusk is directed downwards from the snout, and sits entirely in front of the eyes. The pineal foramen (or "third eye") on the roof of the skull is large and positioned relatively far back. [1]

Lower jaw

The mandible of Taoheodon is mostly known from part of the dentary, with portions of the angular, surangular and splenial bones. The dentary is large and robust, with a rough, pitted surface texture at its front and along the top surface, corresponding to the horny beak typical of dicynodonts. The tip of the lower jaw is missing, so the exact shape of the beak is unknown; however, a low and wide curved ridge defines a clear edge between the side and front faces of the beak. Like other dicynodonts, the angular supports a prominent reflected lamina, which may have supported the eardrum in non-mammalian therapsids. In Taoheodon, the reflected lamina is large and rounded, facing down and back from the mandibular fenestra. [1] [3]

History of discovery

The holotype and only known specimen of Taoheodon, IVPP V 25335, was discovered in the valley of a tributary of the Tao He river, running through the lower part of the Sunjiagou Formation. The Sunjiagou Formation has been dated to the Late Permian (Lopingian epoch), although the exact age of the lower beds has been debated; either representing the late Wuchiapingian age or early Changhsingian. The lower Sunjiagou Formation is composed of grey to greenish-grey mudstones and fine grained sandstones, although the fossil of Taoheodon itself was found contained within an eroded rock nodule. This erosion resulted in the loss of the zygomatic arches and the tip of the snout from the specimen which had been exposed prior to collection, and the specimen has also been slightly compressed from top to bottom during fossilisation. The specimen was described in 2020 by Jun Liu as a new genus and species, Taoheodon baizhijuni. Taoheodon was named for the nearby Tao He river where it was discovered, combined with the Ancient Greek -odous for 'tooth', a common suffix in dicynodont generic names. The specific name is in honour of the fossil collector Bai Zhijun who discovered the specimen. [1] [4]

Classification

Taoheodon was a member of the dicynodont infraorder Dicynodontoidea, and is distinguished from all other dicynodonts by three unique autapomorphies: the top of postorbital bars behind the eyes have a shallow depression (fossa) where they meet the rest of the skull, the basisphenoid (a part on the underside of the braincase) slopes anterodorsally at a shallow angle in the basisphenoid-basioccipital tubera, and unlike other dicynodonts it lacks a keel on the pterygoid bones of the palate. Taoheodon was included in an updated phylogenetic analysis of dicynodonts using the combined datasets of Olivier et al. (2019) [5] and Kammerer (2019). [6] Within Dicynodontoidea, Taoheodon was found to group within a clade containing Dicynodon and very similar taxa that Liu identified as the "core-Dicynodon" clade.

The cladogram produced by Liu (2020), simplified and focused on the relationships of dicynodontoids, is shown below: [1]

Dicynodontoidea
"Core-Dicynodon" clade

The results of the analysis are almost identical to the cladograms produced from the previous studies, however, the position of the two Laotian dicynodonts Counillonia and Repelinosaurus differs from their original descriptions. The two Laotian genera were found to clade together with Taoheodon in the "core-Dicynodon" clade, contrasting with the analysis of Olivier and colleagues which originally found Repelinosaurus to be the basalmost kannemeyeriiform. Liu found Taoheodon and the Laotian dicynodonts to share a number of features, including notably short snouts, pineal foramens placed further back on the roof of the skull, anteriorly inclined occiputs, a fairly straight suture between the nasals and frontals, lacking the postfrontal bones, fairly flat postorbitals in the temporal area, and a large fossa on the ventral surface of the intertemporal bar. [1] [5]

Palaeobiogeography

The close relationship of Taoheodon to the Laotian dicynodonts suggests that there was a direct link between the North China Block, South China Block and Indochina Block that created a corridor of land for dicynodonts in Northern China to disperse into Laos on the Indochina Block and speciate. This paleobiogeographic inference has implications for the timing of the collisions between these landmasses, which although uncertainly dated, have typically been inferred to have occurred later during the Triassic period. The presence of a clade of closely related dicynodonts between these landmasses suggests that they were connected in some way by the end of the Permian. Furthermore, their position within a "core-Dicynodon" clade indicates that Taoheodon was part of a lineage of dicynodonts that could freely migrate from North China through Russia to South Africa. [1]

Palaeoecology

In the lower part of the Sunjiagou Formation, Taoheodon coexisted with the diminutive pareiasaurian parareptile Sanchuansaurus (a possible a relative of the better known Elginia ), a probable large cryptodont dicynodont, and the late surviving semi-aquatic predatory embolomere Seroherpeton . [4] [7] [8] The lower part of the Sunjiagou Formation is largely composed of fluvial and lacustrine sediments with infrequent coal seams that indicate a wet, swampy environment with abundant lake-shore habitats that preserve vertical burrows and rich, intensive bioturbation by aquatic organisms. [9] [10] Plant remains include Ningxiaites specialis , a partially deciduous conifer with an evergreen canopy that would shed only some of its leaves annually. [11]

Related Research Articles

<span class="mw-page-title-main">Dicynodontia</span> Extinct clade of therapsids

Dicynodontia is an extinct clade of anomodonts, an extinct type of non-mammalian therapsid. Dicynodonts were herbivores that typically bore a pair of tusks, hence their name, which means 'two dog tooth'. Members of the group possessed a horny, typically toothless beak, unique amongst all synapsids. Dicynodonts first appeared in Southern Pangaea during the mid-Permian, ca. 270–260 million years ago, and became globally distributed and the dominant herbivorous animals in the Late Permian, ca. 260–252 Mya. They were devastated by the end-Permian Extinction that wiped out most other therapsids ca. 252 Mya. They rebounded during the Triassic but died out towards the end of that period. They were the most successful and diverse of the non-mammalian therapsids, with over 70 genera known, varying from rat-sized burrowers to elephant-sized browsers.

<i>Robertia</i> Extinct genus of dicynodonts

Robertia is an extinct genus of small herbivorous dicynodonts from the Middle to Late Permian of South Africa, between 260 and 265 million years ago. It is a monospecific genus, consisting of the type-species R. broomiana, which was classified by Lieuwe Dirk Boonstra in 1948 and named in honor of Robert Broom for his study of South African mammal-like reptiles.

<i>Theriognathus</i> Extinct genus of therapsids from late Permian South Africa and Tanzania

Theriognathus is an extinct genus of therocephalian therapsid belonging to the family Whaitsiidae, known from fossils from South Africa, Zambia, and Tanzania. Theriognathus has been dated as existing during the Late Permian. Although Theriognathus means mammal jaw, the lower jaw is actually made up of several bones as seen in modern reptiles, in contrast to mammals. Theriognathus displayed many different reptilian and mammalian characteristics. For example, Theriognathus had canine teeth like mammals, and a secondary palate, multiple bones in the mandible, and a typical reptilian jaw joint, all characteristics of reptiles. It is speculated that Theriognathus was either carnivorous or omnivorous based on its teeth, and was suited to hunting small prey in undergrowth. This synapsid adopted a sleek profile of a mammalian predator, with a narrow snout and around 1 meter long. Theriognathus is represented by 56 specimens in the fossil record.

<i>Biseridens</i> Extinct genus of therapsids

Biseridens is an extinct genus of anomodont therapsid, and one of the most basal anomodont genera known. Originally known from a partial skull misidentified as an eotitanosuchian in 1997, another well-preserved skull was found in the Qingtoushan Formation in the Qilian Mountains of Gansu, China, in 2009 that clarified its relationships to anomodonts, such as the dicynodonts.

<i>Dimacrodon</i> Extinct genus of synapsids

Dimacrodon is an extinct genus of non-mammalian synapsid from the latest Early Permian San Angelo Formation of Texas. It is distinguished by toothless, possibly beaked jaw tips, large lower canines and a thin bony crest on top of its head. Previously thought to be an anomodont therapsid related to dicynodonts, it was later found to lack any diagnostic features of anomodonts or even therapsids and instead appears to be a 'pelycosaur'-grade synapsid of uncertain classification.

<i>Dicynodontoides</i> Extinct genus of dicynodonts

Dicynodontoides is a genus of small to medium-bodied, herbivorous, emydopoid dicynodonts from the Late Permian. The name Dicynodontoides references its “dicynodont-like” appearance due to the caniniform tusks featured by most members of this infraorder. Kingoria, a junior synonym, has been used more widely in the literature than the more obscure Dicynodontoides, which is similar-sounding to another distantly related genus of dicynodont, Dicynodon. Two species are recognized: D. recurvidens from South Africa, and D. nowacki from Tanzania.

<i>Odontocyclops</i> Extinct genus of dicynodonts

Odontocyclops is an extinct genus of Dicynodonts that lived in the Late Permian. Dicynodonts are believed to be the first major assemblage of terrestrial herbivores. Fossils of Odontocyclops have been found in the Karoo Basin of South Africa and the Luangwa Valley of Zambia. The phylogenetic classification of Odontocyclops has been long under debate, but most current research places them as their own genus of Dicynodonts and being very closely related to Rhachiocephalus and Oudenodon.

<i>Pelanomodon</i> Extinct genus of dicynodonts

Pelanomodon is an extinct genus of dicynodont therapsids that lived in the Late Permian period. Fossil evidence of this genus is principally found in the Karoo Basin of South Africa, in the Dicynodon Assemblage Zone. Lack of fossil record after the Late Permian epoch suggests that Pelanomodon fell victim to the Permian-Triassic extinction event.

<i>Kombuisia</i> Extinct genus of dicynodonts

Kombuisia is a genus of dicynodont from Early to Middle Triassic of South Africa and Antarctica. Two species were described for the genus: Kombuisia frerensis (type) and Kombuisia antarctica.

Syops is an extinct genus of dicynodont therapsid. The type species S. vanhoepeni was first named in 1938 as Dicynodon vanhoepeni. Fossils of the genus have been found in the Cistecephalus Assemblage Zone in the Usili Formation of the Ruhuhu Basin, Tanzania and the Upper Madumabisa Mudstone Formation of the Luangwa Basin, Zambia. Its phylogenetic placement is somewhat uncertain, with multiple different studies finding it as either a basal geikiid, rhachiocephalid a dicynodontoid more derived than the most basal genera but less derived than Lystrosauridae, or a lystrosaurid.

<span class="mw-page-title-main">Bidentalia</span> Extinct clade of dicynodonts

Bidentalia is a group of dicynodont therapsids. Bidentalia was one of the first names used to describe dicynodonts; the group was established in 1876, while the name "bidentals" dates back as far as 1845. With the increasing prominence of phylogenetics, the group was redefined as a clade in 2009. Bidentalia is now considered a stem-based taxon that includes all taxa more closely related to Aulacephalodon bainii and Dicynodon lacerticeps than Emydops arctatus.

Daqingshanodon is an extinct genus of dicynodont therapsid from the Late Permian of Inner Mongolia, China. The type species D. limbus was described in 1989 from a single skull found in the Naobaogou Formation. Daqingshanodon belongs to a group of dicynodonts called cryptodonts. It is the smallest known cryptodont, and the only one known from China. Like other cryptodonts, it has a pair of rounded nasal bosses above its nostrils and a ridge of bone on the upper jaw called the postcaniniform process. Daqingshanodon has a pair of elongated, recurved tusks extending from its beak-like snout. It is distinguished from other dicynodonts by the presence of a distinct ridge running along the side of the skull from below the eye socket to the area around the tusks. The skull of Daqingshanodon is less than 10 centimetres (3.9 in) long, yet this specimen is thought to have been an adult on the basis of its well-developed nasal bosses.

<i>Turfanodon</i> Extinct genus of dicynodonts

Turfanodon is an extinct genus of dicynodont therapsid from the Late Permian Sunan, Guodikeng, and Naobaogou Formations of China. The holotype of T. bogdaensis was discovered between 1963-1964 and was originally named in 1973 by A. Sun with the type species Turfanodon bogdaensis, Turfanodon was reclassified as a junior synonym of the related Dicynodon in 1988 by G. M. King. T. bogdaensis remained a species of Dicynodon for over two decades before the genus was reinstated in 2011 in a revision of the taxonomy of Dicynodon by palaeontologist Christian Kammerer. A second species from Inner Mongolia, T. jiufengensis, was named in 2021 by palaeontologist Jun Liu from a nearly complete skeleton and other referred bones. Turfanodon was a relatively large dicynodont, and similar in appearance to the related Daptocephalus from South Africa.

Kunpania is an extinct genus of dicynodont therapsid from the Quanzijie Formation of Xinjiang, China. The type and only species is K. scopulusa, and it is known only by a single incomplete specimen including parts of the skull and forelimb. Since its initial description in 1978 by palaeontologist Ailing Sun, it has sometimes been considered to be another species of Dicynodon by other researchers, or potentially undiagnostic. However, a redescription in 2021 reaffirmed its distinctiveness, including a uniquely well developed muscle attachment on the humerus. Kunpania is perhaps the oldest known member of the derived dicynodont group Dicynodontoidea, potentially dating to the Middle Permian period during the Capitanian, and so may fill a knowledge gap in the history of dicynodont evolution.

<i>Bulbasaurus</i> Extinct genus of dicynodonts

Bulbasaurus is an extinct genus of dicynodont that is known from the Lopingian epoch of the Late Permian period of what is now South Africa, containing the type and only species B. phylloxyron. It was formerly considered as belonging to Tropidostoma; however, due to numerous differences from Tropidostoma in terms of skull morphology and size, it has been reclassified the earliest known member of the family Geikiidae, and the only member of the group known from the Tropidostoma Assemblage Zone. Within the Geikiidae, it has been placed close to Aulacephalodon, although a more basal position is not implausible.

<i>Thliptosaurus</i> Extinct genus of dicynodonts

Thliptosaurus is an extinct genus of small kingoriid dicynodont from the latest Permian period of the Karoo Basin in KwaZulu-Natal, South Africa. It contains the type and only known species T. imperforatus. Thliptosaurus is from the upper Daptocephalus Assemblage Zone, making it one of the youngest Permian dicynodonts known, living just prior to the Permian mass extinction. It also represents one of the few small bodied dicynodonts to exist at this time, when most other dicynodonts had large body sizes and many small dicynodonts had gone extinct. The unexpected discovery of Thliptosaurus in a region of the Karoo outside of the historically sampled localities suggests that it may have been part of an endemic local fauna not found in these historic sites. Such under-sampled localities may contain 'hidden diversities' of Permian faunas that are unknown from traditional samples. Thliptosaurus is also unusual for dicynodonts as it lacks a pineal foramen, suggesting that it played a much less important role in thermoregulation than it did for other dicynodonts.

<i>Counillonia</i> Extinct genus of dicynodonts

Counillonia is an extinct genus of dicynodont therapsid from the area of Luang Prabang in Laos, Southeast Asia that lived at around the time of the Permian-Triassic boundary and possibly dates to the earliest Early Triassic. Its type and only known species is C. superoculis. Counillonia was related to the Triassic dicynodonts such as Lystrosaurus and the Kannemeyeriiformes that survived the Permian mass extinction, but it was more closely related to the Permian genus Dicynodon than to either of these lineages. Counillonia may then possibly represent another line of dicynodonts that survived the Permian mass extinction into the Triassic period, depending on its age. The discovery of Counillonia in Laos and its unexpected evolutionary relationships hint at the less well understood geographies of dicynodont diversity across the Permo-Triassic boundary outside of well explored regions like the Karoo Basin in South Africa.

<i>Repelinosaurus</i> Extinct genus of dicynodonts

Repelinosaurus is an extinct genus of dicynodont from the Purple Claystone Formation of Luang Prabang in Laos, Southeast Asia that lived at around the time of the Permian-Triassic boundary and possibly dates to the earliest Early Triassic. Its type and only known species is R. robustus. Repelinosaurus was originally described as the earliest known kannemeyeriiform dicynodont, supporting the idea of a more rapid radiation of the Triassic kannemeyeriiform dicynodonts during the Early Triassic following the Permian mass extinction. However, it may alternatively be more closely related to the Permian Dicynodon. The discovery of a potential early kannemeyeriiform in an understudied locality like Laos highlights the importance of such places in dicynodont research, which has been largely focused on historically important localities such as the Karoo Basin of South Africa.

<i>Ufudocyclops</i> Extinct genus of dicynodonts

Ufudocyclops is an extinct genus of stahleckeriid dicynodont from the Middle Triassic of South Africa. It was found in the Burgersdorp Formation, part of the uppermost Cynognathus Assemblage Zone of the Beaufort Group in the Karoo Basin. The type and only known species is U. mukanelai. It was a large, beaked herbivore like other Triassic dicynodonts, lacking tusks, and is mostly characterised by unique features of the skull. It is known from three specimens, two of which were previously referred to the Tanzanian dicynodont Angonisaurus. The separation of Ufudocyclops from Angonisaurus indicates that the Middle Triassic fauna of the Beaufort Group in South Africa was not part of a larger shared fauna with those of the Manda Beds in Tanzania, as was previously supposed, and suggests that they were separated as more localised faunas, possibly by geographic barriers or in time. Ufudocyclops then would have been a unique part of the uppermost Cynognathus Assemblage Zone in South Africa. It is also the oldest known member of the family Stahleckeriidae, and implies that the family was already diversifying in the Middle Triassic alongside other kannemeyeriiforms, not just in the Late Triassic after other families died out.

Kembawacela is an extinct genus of cistecephalid dicynodont from the Late Permian of East Africa. The genus contains two known species, the type species Kembawacela kitchingi from the Madumabisa Mudstone Formation of Zambia described in 2019, and a second species, K. yajuwayeyi, from the Chiweta Beds of Malawi described in 2022. Like other cistecephalids, Kembawacela was specialised for a fossorial, burrowing lifestyle similar to modern day moles. It is unique amongst cistecephalids for the presence of a pair of tusks in the upper jaw, characteristic of many other dicynodonts but lost in other cistecephalids. It is likely that Kembawacela was a locally endemic species of cistecephalid in the Luangwa Basin of Zambia.

References

  1. 1 2 3 4 5 6 7 Liu, Jun (2020). "Taoheodon baizhijuni, gen. et sp. nov. (Anomodontia, Dicynodontoidea), from the upper Permian Sunjiagou Formation of China and its implications". Journal of Vertebrate Paleontology . 40: e1762088. Bibcode:2020JVPal..40E2088L. doi:10.1080/02724634.2020.1762088. S2CID   221749476.
  2. Kemp, T.S. (1982). "Anomodonts". Mammal-like reptiles and the origin of mammals. Academic Press. ISBN   0124041205.
  3. Laaß, M. (2015). "The origins of the cochlea and impedance matching hearing in synapsids". Acta Palaeontologica Polonica . 60. doi: 10.4202/app.00140.2014 .
  4. 1 2 Yi, Jian; Liu, Jun (2020). "Pareiasaur and dicynodont fossils from upper Permian of Shouyang, Shanxi, China" (PDF). Vertebrata PalAsiatica . 51 (8): 16–23. doi:10.19615/j.cnki.1000-3118.191121.
  5. 1 2 Olivier, C.; Battail, B.; Bourquin, S.; Rossignol, S.; Steyer, J.-S.; Jalil, N.-E. (2019). "New dicynodonts (Therapsida, Anomodontia) from near the Permo-Triassic boundary of Laos: implications for dicynodont survivorship across the Permo-Triassic mass extinction and the paleobiogeography of Southeast Asian blocks" (PDF). Journal of Vertebrate Paleontology. 39 (2): e1584745. Bibcode:2019JVPal..39E4745O. doi:10.1080/02724634.2019.1584745. S2CID   150253165.
  6. Christian F. Kammerer (2019). "Revision of the Tanzanian dicynodont Dicynodon huenei (Therapsida: Anomodontia) from the Permian Usili Formation". PeerJ. 7: e7420. doi: 10.7717/peerj.7420 . PMC   6708577 . PMID   31497385.
  7. Benton, M. J. (2016). "The Chinese pareiasaurs" (PDF). Zoological Journal of the Linnean Society . 177 (4): 813–853. doi:10.1111/zoj.12389. hdl: 1983/6d1a4f9b-a768-4b86-acb1-b3ad1f7ee885 .
  8. Chen, J.; Liu, J. (2020). "The youngest occurrence of embolomeres (Tetrapoda: Anthracosauria) from the Sunjiagou Formation (Lopingian, Permian) of North China". Fossil Record . 23 (2): 205–213. doi: 10.5194/fr-23-205-2020 .
  9. Chu, D.; Tong, J.; Song, H.; Benton, M. J.; Bottjer, D. J.; Song, H.; Tian, L. (2015). "Early Triassic wrinkle structures on land: stressed environments and oases for life". Scientific Reports . 5: 10109. Bibcode:2015NatSR...510109C. doi: 10.1038/srep10109 . PMC   4460569 . PMID   26054731.
  10. Chu, D.; Tong, J.; Bottjer, D.J.; Song, H.; Song, H.; Benton, M.J.; Tian, L.; Guo, W. (2017). "Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction". Palaeogeography, Palaeoclimatology, Palaeoecology . 474: 214–231. Bibcode:2017PPP...474..214C. doi:10.1016/j.palaeo.2016.06.013. hdl: 1983/95966174-157e-4814-b73f-6901ff9b9bf8 .
  11. Wei, H.; Feng, Z.; Yang, J.; Chen, Y.; Shen, J.; He, X. (2015). "Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer". Scientific Reports. 5: 12405. Bibcode:2015NatSR...512405W. doi: 10.1038/srep12405 . PMC   4510520 . PMID   26198410.