Nyaphulia

Last updated

Nyaphulia
Temporal range: Middle Permian, Wordian
~266.9–264.4  Ma
O
S
D
C
P
T
J
K
Pg
N
Nyaphulia snout and skull roof.jpg
Digital renders of the snout and skull roof of the holotype of Nyaphulia oelofseni (NMQR 2913)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Anomodontia
Clade: Dicynodontia
Genus: Nyaphulia
Duhamel et al., 2024
Species:
N. oelofseni
Binomial name
Nyaphulia oelofseni
(Rubidge, 1990)
Synonyms

Nyaphulia is an extinct genus of dicynodont therapsid from the middle Permian of South Africa, containing only the type species N. oelofseni. The generic name is in honour of John Nyaphuli of the National Museum of Bloemfontein, who contributed extensively to South African palaeontology and discovered the holotype specimen of Nyaphulia in 1982. Nyaphulia was initially named as a second species of the basal dicynodont Eodicynodon by Professor Bruce Rubidge in 1990 as E. oelofseni, named after his mentor in palaeontology and geology Dr. Burger Oelofsen.

Contents

Phylogenetic analyses since then consistently found "E." oelofseni to be more basal than the type species of Eodicynodon, rather than its sister taxon, which researchers suggested indicated it should belong to a distinct genus. "E." oelofseni would be named as the new genus Nyaphulia in 2024, following a thorough redescription of its material after it was CT-scanned and modelled digitally.

Nyaphulia has a mix of features of both earlier anomodonts and dicynodonts. Like early anomodonts, it still has no tusks or secondary palate and a laterally exposed septomaxilla bone around the nose, but like other dicynodonts it has no teeth in its premaxilla or at the tip of the dentary, a lateral dentary shelf, and reduced transverse wings of the pterygoid. Nyaphulia then represents a transitional stage in dicynodont evolution, demonstrating the order in which dicynodont traits such as beaks and tusks evolved.

Description

Like other dicynodonts and early anomodonts, the skull of Nyaphulia has a short snout and large temporal fenestra. The overall shape of its skull is more like those of earlier anomodonts, such as Patranomodon than later dicynodonts, with a slender construction and a rounded—rather than sloping—snout profile. Nyaphulia is notable among dicynodonts for lacking tusks and the associated caniniform processes entirely (the latter still being present even in almost all tuskless dicynodonts), with a level jaw margin like those of earlier anomodonts. However, unlike earlier anomodonts, both the premaxilla and the tip of the dentaries in the upper and lower jaws, respectively, are entirely toothless, suggesting Nyaphulia had a beak like other dicynodonts. [1]

Skull

The premaxillae supporting the beak are paired, unlike all other dicynodonts where they are fused into a single bone—except for Eodicynodon. The palatal surface of the premaxillae extends back somewhat, however, it is short and the bony internal nostrils (choanae) still open near the front of the mouth at the level of the maxillary teeth. As such, Nyaphulia does not have the bony secondary palate found in later dicynodonts (wherein the choanae open further back than the tusks). The nasal processes of the premaxilla that wedge between the nasal bones are relatively long in Nyaphulia compared to Eodicynodon and Patranomodon. The septomaxilla—a bone found in the nose unique to synapsids in the fossil record—is also exposed on the lateral surface of the snout, unlike most later dicynodonts where it is restricted to within the nostril opening. The exposure is thin and tapers back to meet the lacrimal, running between the nasals above and the maxilla below. [1]

The squamosal is incomplete and missing the entire zygomatic arch, however the preserved portion encompassing the rear of the temporal fenestra is curved forward and down and the ventral process beneath the zygomatic arch is slender and fairly straight. This resembles the condition in Patranomodon and other early anomodonts, rather than being thicker and folded back as in later dicynodonts. Like other anomodonts, Nyaphulia has a preparietal bone. However, it unusually does not form part of the border of the pineal foramen, which in Nyaphulia is rimmed entirely by the parietals. The orbital region of Nyaphulia is poorly preserved, missing most of the jugal bone, but what is preserved indicates that the orbits are not as rounded as those Eodicynodon and are more similar to those of Patranomodon. The postorbital bar is thin compared to Eodicynodon. [1]

Digital renders of the mandibles of the holotype of Nyaphulia oelofseni (NMQR 2913) Nyaphulia mandibles.jpg
Digital renders of the mandibles of the holotype of Nyaphulia oelofseni (NMQR 2913)

The palate of Nypahulia is characteristic of dicynodonts. The transverse flange of the pterygoid bone is directed anteriorly as in later dicynodonts, rather than laterally to the side as in earlier anomodonts and other therapsids. The transverse flange also has a very prominent and bulbous palatal keel, developed more strongly than in other dicynodonts apart from Eodicynodon. By contrast, the shape of the parabasisphenoid flooring the braincase is more like that of Patranomodon and earlier anomodonts. [1]

Jaws and teeth

Unlike the paired premaxillae, the dentary tips of the lower jaw are fused into a single element at their symphysis. Like later dicynodonts, the dentary tip is toothless with flat dentary tables on either side and a prominent lateral dentary shelf above the mandibular fenestra. This shelf would have served as an attachment point for the forward slip of jaw musculature that allowed dicynodonts to pull the lower jaw backwards to chew. Like some other dicynodonts, the dentary tip is curved upwards and so appears hooked from the side. [2] Unlike Eodicynodon but like other dicynodonts, it lacks a coronoid eminence on the rear of the lower jaw. [1]

The teeth of Nyaphulia are homodont and consist entirely of small, peg-like teeth slanted forwards in the jaw. This is unlike most other therapsids but similar to other early anomodonts such as Patranomodon and Galeops . As preserved, each maxilla has at least three teeth, potentially up to six (although some of these may be replacement teeth), and the dentaries at least eight teeth each. The maxillary teeth are placed entirely behind the openings for the nostrils (equivalent to the position of the tusks in Eodicynodon), and the dentary teeth are similarly far back from the dentary tips, leaving the jaw tips toothless. Rubidge (1990) reported nutrient foramina at the dentary tip, associated with a keratinous covering, though Duhamel et al. (2024) did not identify them. [1] [2]

History of discovery

Digital renders of the occiput of the holotype of Nyaphulia oelofseni (NMQR 2913) Nyaphulia occiput.jpg
Digital renders of the occiput of the holotype of Nyaphulia oelofseni (NMQR 2913)

The holotype specimen of Nyaphulia, NMQR 2913, was discovered in October 1982 by John Nyaphuli from the National Museum in Bloemfontein, South Africa. It was discovered on Botterkraal Farm in the Prince Albert District of Western Cape, South Africa in rocks from the lower Abrahamskraal Formation. [1] [2] This locality belongs to the Eodicynodon Assemblage Zone biozone, which has not been firmly dated but is roughly constrained to between 266.9 and 264.7 million years old during the Wordian stage of the middle Permian period (Guadalupian). [3] [4]

NMQR 2913 consists of a partial skull, lower jaw and unidentifiable bones from the postcranial skeleton. [1] The specimen was preserved in a calcareous nodule surrounding the skull, which prior to discovery had broken into four separate pieces leading to parts from the middle of the skull being weathered away. [2] The specimen was prepared both in acid and mechanically by Nyaphuli, and was later described in 1990 by Professor Bruce Rubidge. Rubidge named the specimen the type of a new species of Eodicynodon that he coined Eodicynodon olefseni, after his mentor in South African palaeontology and geology, Dr. Burger Oelefsen. [2] Since its initial description, the delicate skull has been broken several times and consequently some parts of the skull included in its original description have been lost. The skull has also been taphonomically distorted and damaged by compression during fossilisation, deforming portions of the snout, crushing the palate, and displacing the entire occiput up and to the side. [1]

NMQR 2913 was digitally re-examined and then redescribed in a 2024 paper by Alienor Duhamel and colleagues after the specimen was previously CT-scanned. These techniques allowed Duhamel and colleagues to describe anatomical features that were previously inaccessible through traditional examination (such as sutures and the internal surface of the skull), and comparisons to the anatomy of Eodicynodon oosthuizeni confirmed that NMQR 2913 is not referable to Eodicynodon. Consequently, they erected the new genus Nyaphulia for "E." oelofseni, named in honour of John Nyaphuli for his extensive work on South African palaeontology in the Karoo, including the discovery of NMQR 2913 itself. [1]

Classification

Rubidge (1990) originally referred Nyaphulia to the genus Eodicynodon on the basis of shared plesiomorphic (ancestrally present) characteristics that are also absent in any later dicynodonts. These are namely the unfused premaxillae and vomers and the large, bulbous palatal keels of the transverse pterygoid flanges. Rubidge (1990) nonetheless recognised it at least as a distinct species ("E." oelofseni), primarily on the basis of the number and position of the maxillary teeth and the lack of canine tusks. [2] Other researchers, such as Gillian King, accepted Rubidge's referral of "E." oelofseni to Eodicynodon. [5] [6] However, early phylogenetic analyses of dicynodont relationships notably did not actually include "E." oelofseni, and only E. oosthuizeni was used to analyse the genus (e.g. Modesto et al., 1999; Modesto & Rubidge, 2000). [7] [8]

The referral of "E." oelofseni to Eodicynodon was first questioned in 2003 by Modesto and colleagues after testing its own phylogenetic relationships for the first time together with E. oosthuizeni. From their results, they argued that there was no compelling reason to believe they were each other's closest relatives and that E. oosthuizeni has much more in common with later dicynodonts, and therefore that "E." oelofseni likely represented a distinct taxon. [9] This view has been supported by later researchers and upheld by further analyses, but a formal reassignment was avoided until it could be fully redescribed, accomplished by Duhamel and colleagues in 2024. [1]

Phylogeny

Nyaphulia has been included in numerous phylogenetic analyses of anomodonts as "Eodicynodon" oelofseni (e.g. Kammerer et al., 2011; Castanhinha et al. 2013). These analyses consistently found "E." oelofseni to be the basal-most dicynodont (as the group is defined) and not the sister-taxon to E. oosthuizeni, as would be expected of congeneric species. [10] [11]

Nyaphulia was re-coded by Duhamel and colleagues in 2024 based on the updated information on its cranial and endocranial anatomy. Because they were focused on these characteristics, they modified the phylogenetic dataset they used and removed all postcranial characteristics for the analysis, unlike most other analyses using the same dataset. They also removed many derived dicynodonts from the analysis too, except for those with known endocranial anatomy. They performed various types of phylogenetic analyses, including cladistic and Bayesian analyses, some of the first performed on therapsid relationships. As before, all of their analyses consistently found Nyaphulia to be more basal than Eodicynodon but closer to other dicynodonts than any of the other early anomodonts, whose relationships varied considerably between analyses.

The following phylogeny is modified from one of the Bayesian phylogenetic analysis Duhamel et al. (2024): [1]

Anomodontia

Biseridens

Anomocephaloidea

Anomocephalus

Tiarajudens

Venyukovioidea

Otsheria

Suminia

Ulemica

Chainosauria

Patranomodon

Galechirus

Galeops

Galepus

Dicynodontia

Nyaphulia

Eodicynodon

Colobodectes

Lanthanostegus

Pylaecephalidae

More derived dicynodonts

Nyaphulia shares with other dicynodonts the absence of premaxillary teeth, forward-projecting transverse processes of the pterygoid with pterygoid keels, a lateral dentary shelf, and the absence of vertical lamina on the surangular of the lower jaw. At the same time, it differs from Eodicynodon and all other dicynodonts by the combination of lacking a tusk and caniniform process, absence of a secondary palate, lateral exposure of the septomaxilla, and a parabasisphenoid that reaches the interpterygoid vacuity—all features it shares with various earlier anomodonts. Nyaphulia therefore represents a transitional stage in the evolution of dicynodont characteristics. [1]

Palaeoecology

Palaeoenvironment reconstruction of the Eodicynodon Assemblage Zone, based on the Onder Karoo locality Onder Karoo.png
Palaeoenvironment reconstruction of the Eodicynodon Assemblage Zone, based on the Onder Karoo locality

Nyaphulia was part of the Eodicynodon Assemblage Zone (AZ), the oldest known faunal assemblage in the Beaufort Group of the Karoo, South Africa. Fossils are relatively rare in the Eodicynodon AZ and the fauna of the assemblage is poorly known compared to later zones, but includes a relatively diverse range of tetrapods nonetheless. Nyaphulia coexisted with two other small herbivorous anomodonts, the more basal Patranomodon and the tusked dicynodont Eodicynodon. Other therapsids included the much larger herbivorous tapinocephalian Tapinocaninus as well as several large predators: the anteosaur Australosyodon , the scylacosaurid therocephalian Eutheriodon , [13] and a gorgonopsian of indeterminable affinity. [14] Additionally, there are fossils of indeterminate temnospondyl amphibians and preserved scales of the fish Namaichthys , as well as freshwater bivalves comparable to Palaeanodonta. [3]

The depositional environment of the Eodicynodon AZ was a subaerial deltaic plain and floodplain relatively close to the shoreline of the Ecca sea, with low sinuosity rivers draining from mountains to the south northwards into the sea. Over time, the plain built up and the shoreline progradated further to the north and northwest. Interchannel deposits indicate the presence of perennial lakes on the floodplains as well, which occasionally dried out but not for prolonged periods (unlike the playa lakes from later assemblage zones in the Beaufort Group). While animal fossils are scarce in the assemblage zone, plant remains are relatively abundant, namely of the woody seed plant Glossopteris and equisetales (horsetails), such as the large Schizoneura that grew in and around the rivers and lakes. [3] [15]

Related Research Articles

<i>Robertia</i> Extinct genus of dicynodonts

Robertia is an extinct genus of small herbivorous dicynodonts from the Middle to Late Permian of South Africa, between 260 and 265 million years ago. It is a monospecific genus, consisting of the type-species R. broomiana, which was classified by Lieuwe Dirk Boonstra in 1948 and named in honor of Robert Broom for his study of South African mammal-like reptiles.

<i>Emydops</i> Extinct genus of dicynodonts

Emydops is an extinct genus of dicynodont therapsids from the Middle Permian to Late Permian of what is now South Africa. The genus is generally small and herbivorous, sharing the dicynodont synapomorphy of bearing two tusks. In the following years, the genus grew to include fourteen species. Many of these species were erected on the basis of differences in the teeth and the positioning of the frontal and parietal bones. A 2008 study narrowed Emydops down to two species, E. arctatus and the newly described E. oweni.

<i>Eodicynodon</i> Assemblage Zone

The Eodicynodon Assemblage Zone is a tetrapod assemblage zone or biozone which correlates to the Abrahamskraal Formation, Adelaide Subgroup of the Beaufort Group, a fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. The thickest outcrops, reaching approximately 620 metres (2,030 ft), occur south-east of Sutherland, north of Prince Albert, and south-east of Beaufort West. The Eodicynodon Assemblage Zone is the lowermost biozone of the Beaufort Group.

<i>Eodicynodon</i> Extinct genus of dicynodonts

Eodicynodon is an extinct genus of dicynodont therapsids, a highly diverse group of herbivorous synapsids that were widespread during the middle-late Permian and early Triassic. As its name suggests, Eodicynodon is the oldest and most primitive dicynodont yet identified, ranging from the middle to late Permian and possessing a mix of ancestral Anomodont/therapsid features and derived dicynodont synapomorphies.

<i>Tapinocaninus</i> Extinct genus of therapsids

Tapinocaninus is an extinct genus of therapsids in the family Tapinocephalidae, of which it is the most basal member. Only one species is known, Tapinocaninus pamelae. The species is named in honor of Rubidge's mother, Pam. Fossils have been found dating from the Middle Permian.

<i>Endothiodon</i> Extinct genus of dicynodonts

Endothiodon is an extinct genus of large dicynodont from the Late Permian. Like other dicynodonts, Endothiodon was an herbivore, but it lacked the two tusks that characterized most other dicynodonts. The anterior portion of the upper and lower jaw are curved upward, creating a distinct beak that is thought to have allowed them to be specialized grazers.

<i>Anomocephalus</i> Extinct genus of therapsids

Anomocephalus is an extinct genus of primitive anomodonts and belongs to the clade Anomocephaloidea. The name is said to be derived from the Greek word anomos meaning lawless and cephalos meaning head. The proper word for head in Greek is however κεφαλή (kephalē). It is primitive in that it retains a complete set of teeth in both jaws, in contrast to its descendants, the dicynodonts, whose dentition is reduced to only a single pair of tusks, with their jaws covered by a horny beak similar to that of a modern tortoise. However, they are in no way closely related.

<i>Styracocephalus</i>

Styracocephalus platyrhynchus is an extinct genus of dinocephalian therapsid that existed during the mid-Permian throughout South Africa, but mainly in the Karoo Basin. It is often referred to by its single known species Styracocephalus platyrhynchus. The Dinocephalia clade consisted of the largest land vertebrates and herbivores during the early to mid-Permian. This period is often also referred to as the Guadalupian epoch, approximately 270 to 260 million years ago.

<i>Patranomodon</i> Extinct genus of primitive anomodont, South Africa, Permian period

Patranomodon is an extinct genus belonging to the group of Anomodontia. Rubidge and Hopson named this anomodont in 1990 after discovering its skull. Patranomodon is known to have ranged in the Karoo of Southern Africa.

<i>Paraburnetia</i> Extinct genus of therapsids

Paraburnetia is an extinct genus of biarmosuchian therapsids from the Late Permian of South Africa. It is known for its species P. sneeubergensis and belongs to the family Burnetiidae. Paraburnetia lived just before the Permian–Triassic mass extinction event.

<i>Lobalopex</i> Extinct genus of therapsids

Lobalopex is an extinct genus of biarmosuchian therapsids. It was alive during the Late Permian and has only been found in the Teekloof Formation in South Africa. The only known species of the genus is Lobalopex mordax. Lobalopex is part of the clade of Burnetiamorpha, which have fossil specimens located in multiple areas of Africa and Russia.

<i>Myosaurus</i> Extinct genus of dicynodont from the lower Triassic

Myosaurus is a genus of Anomodontia in the order Therapsida. They are also classified as Dicynodontia, which is a subclade of Anomodontia. The Mysosaurus was a small, herbivorous synapsid that existed around the early Triassic period. All of the fossils found of this species were found in Antarctica and South Africa. Compared to other fossils found from species that existed during this time, the Myosaurus is not common in the fossil record. This is due to a shortage of discovered fossils that possess characteristics unique to the Myosaurus. Notably, under 130 fossil fragments have been found that have been classified as Myosauridae, and almost all have been skulls. These skulls can be classified as Myosaurus because this species, unlike other dicynodonts, do not possess tusks or postfrontal teeth. The only species identified in the family Myosauridae is the Myosaurus gracilis, or M. gracilis. It should be recognized that the Myosaurus is almost always referred to as the M. gracilis in scientific research.

<i>Biseridens</i> Extinct genus of therapsids

Biseridens is an extinct genus of anomodont therapsid, and one of the most basal anomodont genera known. Originally known from a partial skull misidentified as an eotitanosuchian in 1997, another well-preserved skull was found in the Qingtoushan Formation in the Qilian Mountains of Gansu, China, in 2009 that clarified its relationships to anomodonts, such as the dicynodonts.

<i>Dicynodontoides</i> Extinct genus of dicynodonts

Dicynodontoides is a genus of small to medium-bodied, herbivorous, emydopoid dicynodonts from the Late Permian. The name Dicynodontoides references its “dicynodont-like” appearance due to the caniniform tusks featured by most members of this infraorder. Kingoria, a junior synonym, has been used more widely in the literature than the more obscure Dicynodontoides, which is similar-sounding to another distantly related genus of dicynodont, Dicynodon. Two species are recognized: D. recurvidens from South Africa, and D. nowacki from Tanzania.

<i>Pelanomodon</i> Extinct genus of dicynodonts

Pelanomodon is an extinct genus of dicynodont therapsids that lived in the Late Permian period. Fossil evidence of this genus is principally found in the Karoo Basin of South Africa, in the Dicynodon Assemblage Zone. Lack of fossil record after the Late Permian epoch suggests that Pelanomodon fell victim to the Permian-Triassic extinction event.

<span class="mw-page-title-main">Venyukovioidea</span> Extinct infraorder of therapsids

Venyukovioidea is an infraorder of anomodont therapsids related to dicynodonts from the Permian of Russia. They have also been known as 'Venjukovioidea', as well as by the similar names 'Venyukoviamorpha' or 'Venjukoviamorpha' in literature. This in part owes to a misspelling by Russian palaeontologist Ivan Efremov in 1940 when he mistakenly spelt Venyukovia, the namesake of the group, with a 'j' instead of a 'y', which permeated through subsequent therapsid literature before the mistake was caught and corrected. The order Ulemicia has also been coined for a similar taxonomic concept in Russian scientific literature, which notably excludes Suminia and Parasuminia.

<span class="mw-page-title-main">Chainosauria</span> Extinct clade of therapsids

Chainosauria is a large and speciose clade of anomodont therapsid that includes the highly diverse dicynodonts and a small number of closely related basal genera —although the total composition and taxonomic scope of Chainosauria is in flux. Chainosauria was named in 1923 to group together the dicynodonts and their close relatives, namely three small anomodont genera from South Africa that made up the now defunct group 'Dromasauria'. The name soon fell into disuse, however, as it was functionally replaced by Anomodontia. Chainosauria was later revived cladistically in 2009, preserving the association of dicynodonts and the 'dromasaurs' and has since served in effect as both a cladistic and a biogeographic counterpart to the Laurasian venyukovioids, with early chainosaurs appearing to have been a Gondwanan radiation.

<span class="mw-page-title-main">Anomocephaloidea</span> Extinct clade of therapsids

Anomocephaloidea is a clade of basal anomodont therapsids related to the dicynodonts known from what is now South Africa and Brazil during the Middle Permian. It includes only two species, Anomocephalus africanus from the Karoo Basin of South Africa and Tiarajudens eccentricus from the Paraná Basin of Brazil. Anomocephaloidea was named in 2011 with the discovery of Tiarajudens, although Anomocephalus itself has been known since 1999.

<i>Bulbasaurus</i> Extinct genus of dicynodonts

Bulbasaurus is an extinct genus of dicynodont that is known from the Lopingian epoch of the Late Permian period of what is now South Africa, containing the type and only species B. phylloxyron. It was formerly considered as belonging to Tropidostoma; however, due to numerous differences from Tropidostoma in terms of skull morphology and size, it has been reclassified the earliest known member of the family Geikiidae, and the only member of the group known from the Tropidostoma Assemblage Zone. Within the Geikiidae, it has been placed close to Aulacephalodon, although a more basal position is not implausible.

<i>Thliptosaurus</i> Extinct genus of dicynodonts

Thliptosaurus is an extinct genus of small kingoriid dicynodont from the latest Permian period of the Karoo Basin in KwaZulu-Natal, South Africa. It contains the type and only known species T. imperforatus. Thliptosaurus is from the upper Daptocephalus Assemblage Zone, making it one of the youngest Permian dicynodonts known, living just prior to the Permian mass extinction. It also represents one of the few small bodied dicynodonts to exist at this time, when most other dicynodonts had large body sizes and many small dicynodonts had gone extinct. The unexpected discovery of Thliptosaurus in a region of the Karoo outside of the historically sampled localities suggests that it may have been part of an endemic local fauna not found in these historic sites. Such under-sampled localities may contain 'hidden diversities' of Permian faunas that are unknown from traditional samples. Thliptosaurus is also unusual for dicynodonts as it lacks a pineal foramen, suggesting that it played a much less important role in thermoregulation than it did for other dicynodonts.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 Duhamel, A.; Benoit, J.; Wynd, B.; Wright, A. M.; Rubidge, B. (2024). "Redescription of three basal anomodonts: a phylogenetic reassessment of the holotype of Eodicynodon oelofseni (NMQR 2913)". Frontiers in Earth Science . 11. 1220341. Bibcode:2024FrEaS..1120341D. doi: 10.3389/feart.2023.1220341 .
  2. 1 2 3 4 5 6 Rubidge, B. (1990). "The cranial morphology of a new species of the genus Eodicynodon (Therapsida, Dicynodontia)". Navorsinge van die Nasionale Museum: Researches of the National Museum. 7 (2): 29–42.
  3. 1 2 3 Rubidge, B.S.; Day, M.O. (2020). "Biostratigraphy of the Eodicynodon Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa". South African Journal of Geology . 123 (2): 141–148. Bibcode:2020SAJG..123..141R. doi:10.25131/sajg.123.0010. S2CID   242275064.
  4. Day, M. O.; Ramezani, J.; Frazer, R. E.; Rubidge, B. S. (2022). "U-Pb zircon age constraints on the vertebrate assemblages and palaeomagnetic record of the Guadalupian Abrahamskraal Formation, Karoo Basin, South Africa". Journal of African Earth Sciences . 186. 104435. Bibcode:2022JAfES.18604435D. doi:10.1016/j.jafrearsci.2021.104435. S2CID   245086992.
  5. King, G. M.; Rubidge, B. S. (1993). "A taxonomic revision of small dicynodonts with postcanine teeth". Zoological Journal of the Linnean Society . 107 (2): 131–154. doi:10.1111/j.1096-3642.1993.tb00218.x.
  6. King, G. M. (1993). "Species longevity and generic diversity in dicynodont mammal-like reptiles". Palaeogeography, Palaeoclimatology, Palaeoecology . 102 (3–4): 321–332. Bibcode:1993PPP...102..321K. doi:10.1016/0031-0182(93)90074-S.
  7. Modesto, S.; Rubidge, B.; Welman, J. (1999). "The most basal anomodont therapsid and the primacy of Gondwana in the evolution of the anomodonts". Proceedings of the Royal Society B: Biological Sciences . 266 (1417): 331–337. doi:10.1098/rspb.1999.0642. PMC   1689688 .
  8. Modesto, S.; Rubidge, B. (2000). "A basal anomodont therapsid from the lower Beaufort Group, Upper Permian of South Africa". Journal of Vertebrate Paleontology . 20 (3): 515–521. doi:10.1671/0272-4634(2000)020[0515:ABATFT]2.0.CO;2. S2CID   131397425.
  9. Modesto, S. P.; Rubidge, B.; Visser, I.; Welman, J. (2003). "A new basal dicynodont from the Upper Permian of South Africa". Palaeontology . 46 (1): 211–223. Bibcode:2003Palgy..46..211M. doi: 10.1111/1475-4983.00295 . S2CID   128620351.
  10. Kammerer, C.F.; Angielczyk, K. D.; Fröbisch, J. (2011). "A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy". Journal of Vertebrate Paleontology. 31 (Suppl. 1): 1–158. Bibcode:2011JVPal..31S...1K. doi:10.1080/02724634.2011.627074. S2CID   84987497.
  11. Castanhinha, R.; Araújo, R.; Júnior, L. S. C.; Angielczyk, K. D.; Martins, G. G.; Martins, R. M. S.; Chaouiya, C.; Beckmann, F.; Wilde, F. (2013). Claessens, Leon (ed.). "Bringing Dicynodonts Back to Life: Paleobiology and Anatomy of a New Emydopoid Genus from the Upper Permian of Mozambique". PLOS ONE . 8 (12): e80974. doi: 10.1371/journal.pone.0094720 . PMC   3852158 . PMID   24324653.
  12. Prevec, R.; Nel, A.; Day, M. O.; Muir, R. A.; Matiwane, A.; Kirkaldy, A. P.; Moyo, S.; Staniczek, A.; Cariglino, B.; Mseko, Z.; Kom, N.; Rubidge, B. S.; Garrouste, R.; Holland, A.; Barber-James, H. M. (2022). "South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail". Communications Biology . 5 (1): 1154. doi:10.1038/s42003-022-04132-y. PMC   9618562 . PMID   36310243.
  13. Kammerer, C. E. (2023). "Revision of the Scylacosauridae (Therapsida: Therocephalia)". Palaeontologia Africana. 56: 51–87. hdl:10539/35700. ISSN   2410-4418.
  14. Kammerer, C. F.; Rubidge, B. S. (2022). "The earliest gorgonopsians from the Karoo Basin of South Africa". Journal of African Earth Sciences. 194: 104631. Bibcode:2022JAfES.19404631K. doi:10.1016/j.jafrearsci.2022.104631. S2CID   249977414.
  15. Rubidge, B. S.; Hancox, P. J.; Catuneanu, O. (2000). "Sequence analysis of the Ecca—Beaufort contact in the southern Karoo of South Africa". South African Journal of Geology. 103 (1): 81–96. Bibcode:2000SAJG..103...81R. doi:10.2113/103.1.81.