Temporal fenestra

Last updated
Skull of an idealised diapsid, with upper and lower temporal fenestrae behind the eye socket Skull diapsida 1.svg
Skull of an idealised diapsid, with upper and lower temporal fenestrae behind the eye socket

Temporal fenestrae are openings in the temporal region of the skull of some amniotes, behind the orbit (eye socket). These openings have historically been used to track the evolution and affinities of reptiles. Temporal fenestrae are commonly (although not universally) seen in the fossilized skulls of dinosaurs and other sauropsids (the total group of reptiles, including birds). [1] The major reptile group Diapsida, for example, is defined by the presence of two temporal fenestrae on each side of the skull. The infratemporal fenestra, also called the lateral temporal fenestra or lower temporal fenestra, is the lower of the two and is exposed primarily in lateral (side) view.

Temporal fenestrae in relation to the other skull openings in the dinosaur Massospondylus, a type of diapsid. Massospondylus Skull Steveoc 86.png
Temporal fenestrae in relation to the other skull openings in the dinosaur Massospondylus , a type of diapsid.

The supratemporal fenestra, also called the upper temporal fenestra, is positioned above the other fenestra and is exposed primarily in dorsal (top) view. In some reptiles, particularly dinosaurs, the parts of the skull roof lying between the supratemporal fenestrae are thinned out by excavations from the adjacent fenestrae. These extended margins of thinned bone are called supratemporal fossae.

The skull of an infant human, a type of synapsid. Note the presence of only one infratemporal fenestra above the zygomatic arch (cheek bone). Sobo 1909 104.png
The skull of an infant human, a type of synapsid. Note the presence of only one infratemporal fenestra above the zygomatic arch (cheek bone).

Synapsids, including mammals, have one temporal fenestra, which is ventrally bordered by a zygomatic arch composed of the jugal and squamosal bones. This single temporal fenestra is homologous to the infratemporal fenestra, as displayed most clearly by early synapsids. [2] In later synapsids, the cynodonts, the orbit fused with the fenestral opening after the latter had started expanding within the therapsids. Most mammals have this merged configuration. Later, primates re-evolved an orbit separated from the temporal fossa. This separation was achieved by the evolution of a postorbital bar, with haplorhines (dry-nosed primates) later evolving a postorbital septum. [3]

Physiological speculation associates temporal fenestrae with a rise in metabolic rates and an increase in jaw musculature. The earlier amniotes of the Carboniferous did not have temporal fenestrae, but two more advanced lines did: the synapsids (stem-mammals and mammals) and the diapsids (most reptiles and later birds).

Fenestration types

There are four types of amniote skull, classified by the number and location of their temporal fenestrae. Though historically important for understanding amniote evolution, some of these configurations have little relevance to modern phylogenetic taxonomy. The four types are:

Related Research Articles

<span class="mw-page-title-main">Anapsid</span> Subclass of reptiles

An anapsid is an amniote whose skull lacks one or more skull openings near the temples. Traditionally, the Anapsida are the most primitive subclass of amniotes, the ancestral stock from which Synapsida and Diapsida evolved, making anapsids paraphyletic. It is however doubtful that all anapsids lack temporal fenestra as a primitive trait, and that all the groups traditionally seen as anapsids truly lacked fenestra.

<span class="mw-page-title-main">Synapsid</span> Clade of tetrapods

Synapsids are one of the two major clades of vertebrate animals in the group Amniota, the other being the sauropsids. The synapsids were the dominant land animals in the late Paleozoic and early Mesozoic, but the only group that survived into the Cenozoic are mammals. Unlike other amniotes, synapsids have a single temporal fenestra, an opening low in the skull roof behind each eye orbit, leaving a bony arch beneath each; this accounts for their name. The distinctive temporal fenestra developed about 318 million years ago during the Late Carboniferous period, when synapsids and sauropsids diverged, but was subsequently merged with the orbit in early mammals.

<span class="mw-page-title-main">Diapsid</span> Clade of amniote tetrapods with two holes in each side of their skulls

Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The group first appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are sometimes placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodiles.

The quadratojugal is a skull bone present in many vertebrates, including some living reptiles and amphibians.

<span class="mw-page-title-main">Mesosaur</span> Extinct family of reptiles

Mesosaurs were a group of small aquatic reptiles that lived during the early Permian period (Cisuralian), roughly 299 to 270 million years ago. Mesosaurs were the first known aquatic reptiles, having apparently returned to an aquatic lifestyle from more terrestrial ancestors. It is uncertain which and how many terrestrial traits these ancestors displayed; recent research cannot establish with confidence if the first amniotes were fully terrestrial, or only amphibious. Most authors consider mesosaurs to have been aquatic, although adult animals may have been amphibious, rather than completely aquatic, as indicated by their moderate skeletal adaptations to a semiaquatic lifestyle. Similarly, their affinities are uncertain; they may have been among the most basal sauropsids or among the most basal parareptiles.

<span class="mw-page-title-main">Archosauromorpha</span> Infraclass of reptiles

Archosauromorpha is a clade of diapsid reptiles containing all reptiles more closely related to archosaurs rather than lepidosaurs. Archosauromorphs first appeared during the late Middle Permian or Late Permian, though they became much more common and diverse during the Triassic period.

A fenestra is any small opening or pore, commonly used as a term in the biological sciences. It is the Latin word for "window", and is used in various fields to describe a pore in an anatomical structure.

<span class="mw-page-title-main">Euryapsida</span>

Euryapsida is a polyphyletic group of sauropsids that are distinguished by a single temporal fenestra, an opening behind the orbit, under which the post-orbital and squamosal bones articulate. They are different from Synapsida, which also have a single opening behind the orbit, by the placement of the fenestra. In synapsids, this opening is below the articulation of the post-orbital and squamosal bones. It is now commonly believed that euryapsids are in fact diapsids that lost the lower temporal fenestra. Euryapsids are usually considered entirely extinct, although turtles might be part of the sauropterygian clade while other authors disagree.

<span class="mw-page-title-main">Parareptilia</span> Subclass of reptiles

Parareptilia ("near-reptiles") is a subclass or clade of basal sauropsids/reptiles, typically considered the sister taxon to Eureptilia. Parareptiles first arose near the end of the Carboniferous period and achieved their highest diversity during the Permian period. Several ecological innovations were first accomplished by parareptiles among reptiles. These include the first reptiles to return to marine ecosystems (mesosaurs), the first bipedal reptiles, the first reptiles with advanced hearing systems, and the first large herbivorous reptiles. The only parareptiles to survive into the Triassic period were the procolophonoids, a group of small generalists, omnivores, and herbivores. The largest family of procolophonoids, the procolophonids, rediversified in the Triassic, but subsequently declined and became extinct by the end of the period.

<i>Limnoscelis</i> Genus of diadectomorphs

Limnoscelis was a genus of large diadectomorph tetrapods from the Late Carboniferous of western North America. It includes two species: the type species Limnoscelis paludis from New Mexico, and Limnoscelis dynatis from Colorado, both of which are thought to have lived concurrently. No specimens of Limnoscelis are known from outside of North America. Limnoscelis was carnivorous, and likely semiaquatic, though it may have spent a significant portion of its life on land. Limnoscelis had a combination of derived amphibian and primitive reptilian features, and its placement relative to Amniota has significant implications regarding the origins of the first amniotes.

<i>Aerosaurus</i> Extinct genus of tetrapod

Aerosaurus is an extinct genus within Varanopidae, a family of non-mammalian synapsids. It lived between 252-299 million years ago during the Early Permian in North America. The name comes from Latin aes (aeris) “copper” and Greek sauros “lizard,” for El Cobre Canyon in northern New Mexico, where the type fossil was found and the site of former copper mines. Aerosaurus was a small to medium-bodied carnivorous synapsid characterized by its recurved teeth, triangular lateral temporal fenestra, and extended teeth row. Two species are recognized: A. greenleeorum (1937) and A. wellesi (1981).

<i>Mesenosaurus</i> Extinct genus of synapsids

Mesenosaurus is an extinct genus of amniote. It belongs to the family Varanopidae. This genus includes two species: the type species Mesenosaurus romeri from the middle Permian Mezen River Basin of northern Russia, and Mesenosaurus efremovi from the early Permian (Artinskian) Richards Spur locality. M. romeri’s stratigraphic range is the middle to late Guadalupian while M. efremovi’s stratigraphic range is the Cisuralian.

<i>Heleosaurus</i> Extinct genus of tetrapods

Heleosaurus scholtzi is an extinct species of basal synapsids, known as pelycosaurs, in the family of Varanopidae during the middle Permian. At first H. scholtzi was mistakenly classified as a diapsid. Members of this family were carnivorous and had dermal armor, and somewhat resembled monitor lizards. This family was the most geologically long lived, widespread, and diverse group of early amniotes. To date only two fossils have been found in the rocks of South Africa. One of these fossils is an aggregation of five individuals.

<span class="mw-page-title-main">Skull roof</span> Roofing bones of the skull

The skull roof or the roofing bones of the skull are a set of bones covering the brain, eyes and nostrils in bony fishes and all land-living vertebrates. The bones are derived from dermal bone and are part of the dermatocranium.

<i>Microleter</i> Extinct genus of reptiles

Microleter is an extinct genus of basal procolophonomorph parareptiles which lived in Oklahoma during the Early Permian period. The type and only known species is Microleter mckinzieorum. Microleter is one of several parareptile taxa described from the Richards Spur fissure fills, and can be characterized from its high tooth count, lacrimal/narial contact, short postfrontal, and slit-like temporal emargination edged by the postorbital, jugal, squamosal, and quadratojugal. Contrary to Australothyris, which had a similar phylogenetic position as a basal procolophonomorph, Microleter suggests that early parareptile evolution occurred in Laurasia and that multiple lineages developed openings or emarginations in the temporal region.

Australothyris is an extinct genus of basal procolophonomorph parareptile known from the Middle Permian of Tapinocephalus Assemblage Zone, South Africa. The type and only known species is Australothyris smithi. As the most basal member of Procolophonomorpha, Australothyris helped to contextualize the origin of this major parareptile subgroup. It has been used to support the hypotheses that procolophonomorphs originated in Gondwana and ancestrally possess temporal fenestrae, due to its large and fully enclosed temporal fenestra and South African heritage. It also possessed several unique features, including a high tooth number, long postfrontal, small interpterygoid vacuity, and a specialized interaction between the stapes and quadrate.

<i>Teraterpeton</i> Extinct genus of reptiles

Teraterpeton is an extinct genus of trilophosaurid archosauromorphs. It is known from a partial skeleton from the Late Triassic Wolfville Formation of Nova Scotia, described in 2003. It has many unique features seen in no other related form, including an elongated, toothless snout and large openings for the nostrils. Because of this, Teraterpeton was originally placed in its own family, Teraterpetidae, related to Trilophosaurus. Newer studies generally place it within Trilophosauridae.

<i>Palatodonta</i> Extinct genus of reptiles

Palatodonta is an extinct genus of basal placodontiform marine reptile known from the early Middle Triassic of the Netherlands. It is closely related to a group of marine reptiles called placodonts, characterized by their crushing teeth and shell-like body armor. Palatodonta is transitional between placodonts and earlier reptiles; like placodonts, it has teeth on its palate, but while these teeth are thick and blunt in placodonts, Palatodonta has palatal teeth that are thin and pointed.

<i>Kadimakara australiensis</i> Extinct species of reptile

Kadimakara is an extinct genus of early archosauromorph reptile from the Arcadia Formation of Queensland, Australia. It was seemingly a very close relative of Prolacerta, a carnivorous reptile which possessed a moderately long neck. The generic name Kadimakara references prehistoric creatures from Aboriginal myths which may have been inspired by ice-age megafauna. The specific name K. australiensis relates to the fact that it was found in Australia. Prolacerta and Kadimakara were closely related to the Archosauriformes, a successful group which includes archosaurs such as crocodilians, pterosaurs, and dinosaurs.

Boreopricea is an extinct genus of archosauromorph reptile from the Early Triassic of arctic Russia. It is known from a fairly complete skeleton discovered in a borehole on Kolguyev Island, though damage to the specimen and loss of certain bones has complicated study of the genus. Boreopricea shared many similarities with various other archosauromorphs, making its classification controversial. Various studies have considered it a close relative of Prolacerta, tanystropheids, both, or neither. Boreopricea is unique among early archosauromorphs due to possessing contact between the jugal and squamosal bones at the rear half of the skull.

References

  1. Werneburg, Ingmar (2019). "Morphofunctional Categories and Ontogenetic Origin of Temporal Skull Openings in Amniotes". Frontiers in Earth Science. 7. doi: 10.3389/feart.2019.00013 . ISSN   2296-6463.
  2. Abel, Pascal; Werneburg, Ingmar (October 2021). "Morphology of the temporal skull region in tetrapods: research history, functional explanations, and a new comprehensive classification scheme". Biological Reviews. 96 (5): 2229–2257. doi:10.1111/brv.12751. ISSN   1464-7931. PMID   34056833. S2CID   235256536 . Retrieved 7 December 2022.
  3. Campbell, B. G. & Loy, J. D. (2000). Humankind Emerging (8th ed.). Allyn & Bacon. p. 85. ISBN   0-673-52364-0.