Postorbital bar

Last updated

The postorbital bar (or postorbital bone) is a bony arched structure that connects the frontal bone of the skull to the zygomatic arch, which runs laterally around the eye socket. It is a trait that only occurs in mammalian taxa, such as most strepsirrhine primates [1] and the hyrax, [2] while haplorhine primates have evolved fully enclosed sockets. [1] One theory for this evolutionary difference is the relative importance of vision to both orders. As haplorrhines (tarsiers and simians) tend to be diurnal, and rely heavily on visual input, many strepsirrhines are nocturnal and have a decreased reliance on visual input. [1]

Contents

Postorbital bars evolved several times independently during mammalian evolution [2] and the evolutionary histories of several other clades. Some species, such as Tarsiers, have a postorbital septum. [3] This septum can be considered as joined processes with a small articulation between the frontal bone, the zygomatic bone and the alisphenoid bone and is therefore different from the postorbital bar, while it forms a composite structure together with the postorbital bar. Other species such as dermopterans have postorbital processes, which is a more primitive incomplete stage of the postorbital bar.[ citation needed ]

Function

In the past decades, many different hypothesis were made on the possible function of the postorbital bar.Three of them are commonly cited.

External trauma hypothesis

Prince [4] [5] and Simons [6] offered the external trauma hypothesis, where the postorbital bar protects the orbital contents from external trauma. However, a few years later Cartmill [7] showed otherwise. He was convinced that the postorbital bar was not adequate enough to offer protection against sharp objects such as the teeth of other species. He was therefore convinced that the postorbital bar must have a different function.

Mastication hypothesis

Greaves [8] offered a new view on this bone and came up with the mastication hypothesis. Greaves suggests that the bar strengthens the relatively weak orbital area against torsional loading, imposed by bite force in species with large masseter and temporalis muscles. However the orientation of the postorbital process does not match the direction of the forces mentioned by Greaves. [9] [10]

Position hypothesis

Cartmill [7] [11] [12] suggests that in small mammals with large eyes and relatively small temporal fossae, where the anterior temporal muscle and the temporalis fascia are pulled to a more lateral position with increasing orbital convergence (front-facing eyes), the tension caused by the contraction of these muscles would distort the orbital margins and disrupt oculomotor precision.

Heesy [2] shows that the postorbital bar stiffens the lateral orbit. Without a stiffened lateral orbit, deformation would displace soft tissues, when contraction of the anterior temporalis muscle takes place, thus impeding eye movement.

Occurrence

A complete postorbital bar has evolved at least eleven times as a convergent adaptation in nine mammalian orders. [2] Postorbital bars are characteristic to the following clades:

Postorbital bars have furthermore developed individually in the following taxa:

The presence of a postorbital bar in the extinct Oviraptorosauria species Avimimus portentosus was one of several defining characteristics that suggested to paleontologists that the species was more morphologically different from avian species than previously thought, affecting interpretation of the rate of evolution from dinosaurs to birds. [13]

Postorbital process

Postorbital bars are likely derived from well-developed postorbital processes, an intermediate condition where a small gap retains between the process and the zygomatic arch. Well-developed postorbital processes have evolved separately within the orders of the Dermoptera and Hyracoidae and the Chiropteran families of Emballonuridae and Pteropodidae and to varying degrees within many carnivorian taxa. [2]

Complete postorbital bars and well-developed postorbital processes, retaining gaps of mere centimetres, spanned by the postorbital ligament, occur as polymorphisms within a number of pteropodid and hyracoid taxa. [7] [14] [15] [16]

Related Research Articles

<span class="mw-page-title-main">Zygomatic bone</span> Facial bone

In the human skull, the zygomatic bone, also called cheekbone or malar bone, is a paired irregular bone which articulates with the maxilla, the temporal bone, the sphenoid bone and the frontal bone. It is situated at the upper and lateral part of the face and forms the prominence of the cheek, part of the lateral wall and floor of the orbit, and parts of the temporal fossa and the infratemporal fossa. It presents a malar and a temporal surface; four processes, and four borders.

<span class="mw-page-title-main">Jugal bone</span>

The jugal is a skull bone found in most reptiles, amphibians and birds. In mammals, the jugal is often called the malar or zygomatic. It is connected to the quadratojugal and maxilla, as well as other bones, which may vary by species.

<span class="mw-page-title-main">Entelodont</span> An extinct family of pig-like omnivores from North America and Eurasia

Entelodontidae, the entelodonts, are an extinct family of pig-like artiodactyls which inhabited the Northern Hemisphere from the late Eocene to the Middle Miocene epochs, about 38-19 million years ago. Their large heads, low snouts, narrow gait, and proposed omnivorous diet inspires comparisons to suids and tayassuids (peccaries), and historically they have been considered closely related to these families purely on a morphological basis. However, studies which combine morphological and molecular (genetic) data on artiodactyls instead suggest that entelodonts are cetancodontamorphs, more closely related to hippos and cetaceans through their resemblance to Pakicetus, than to basal pigs like the unicorn pig and other ungulates.

<i>Plesiadapis</i> Extinct genus of mammals

Plesiadapis is one of the oldest known primate-like mammal genera which existed about 58–55 million years ago in North America and Europe. Plesiadapis means "near-Adapis", which is a reference to the adapiform primate of the Eocene period, Adapis. Plesiadapis tricuspidens, the type specimen, is named after the three cusps present on its upper incisors.

<span class="mw-page-title-main">Brow ridge</span> Bony ridge located above the eye sockets of all primates

The brow ridge, or supraorbital ridge known as superciliary arch in medicine, is a bony ridge located above the eye sockets of all primates and some other animals. In humans, the eyebrows are located on their lower margin.

<span class="mw-page-title-main">Cursorial</span>

A cursorial organism is one that is adapted specifically to run. An animal can be considered cursorial if it has the ability to run fast or if it can keep a constant speed for a long distance. "Cursorial" is often used to categorize a certain locomotor mode, which is helpful for biologists who examine behaviors of different animals and the way they move in their environment. Cursorial adaptations can be identified by morphological characteristics, physiological characteristics, maximum speed, and how often running is used in life. There is much debate over how to define a cursorial animal specifically. The most accepted definitions include that a cursorial organism could be considered adapted to long-distance running at high speeds or has the ability to accelerate quickly over short distances. Among vertebrates, animals under 1 kg of mass are rarely considered cursorial, and cursorial behaviors and morphology is thought to only occur at relatively large body masses in mammals. There are a few mammals that have been termed "micro-cursors" that are less than 1 kg in mass and have the ability to run faster than other small animals of similar sizes.

<i>Galesaurus</i> Extinct genus of cynodonts from the Triassic of South Africa

Galesaurus is an extinct genus of carnivorous cynodont therapsid that lived between the Induan and the Olenekian stages of the Early Triassic in what is now South Africa. It was incorrectly classified as a dinosaur by Sir Richard Owen in 1859.

Shoshonius is an extinct genus of omomyid primate that lived during the Eocene. Specimens identified as Shoshonius have been found exclusively in central Wyoming and the genus currently includes two species, Shoshonius cooperi, described by Granger in 1910, and Shoshonius bowni, described by Honey in 1990.

<span class="mw-page-title-main">Feliformia</span> Suborder of carnivores

Feliformia is a suborder within the order Carnivora consisting of "cat-like" carnivorans, including cats, hyenas, mongooses, viverrids, and related taxa. Feliformia stands in contrast to the other suborder of Carnivora, Caniformia.

<span class="mw-page-title-main">Arboreal locomotion</span> Movement of animals through trees

Arboreal locomotion is the locomotion of animals in trees. In habitats in which trees are present, animals have evolved to move in them. Some animals may scale trees only occasionally, but others are exclusively arboreal. The habitats pose numerous mechanical challenges to animals moving through them and lead to a variety of anatomical, behavioral and ecological consequences as well as variations throughout different species. Furthermore, many of these same principles may be applied to climbing without trees, such as on rock piles or mountains.

<span class="mw-page-title-main">Temporal fenestra</span> Opening in the skull behind the orbit in some animals

Temporal fenestrae are openings in the temporal region of the skull of some amniotes, behind the orbit. These openings have historically been used to track the evolution and affinities of reptiles. Temporal fenestrae are commonly seen in the fossilized skulls of dinosaurs and other sauropsids. The major reptile group Diapsida, for example, is defined by the presence of two temporal fenestrae on each side of the skull. The infratemporal fenestra, also called the lateral temporal fenestra or lower temporal fenestra, is the lower of the two and is exposed primarily in lateral (side) view.

<i>Kelenken</i> Extinct genus of birds

Kelenken is a genus of phorusrhacid, an extinct group of large, predatory birds, which lived in what is now Argentina in the middle Miocene about 15 million years ago. The only known specimen was discovered by high school student Guillermo Aguirre-Zabala in Comallo, in the region of Patagonia, and was made the holotype of the new genus and species Kelenken guillermoi in 2007. The genus name references a spirit in Tehuelche mythology, and the specific name honors the discoverer. The holotype consists of one of the most complete skulls known of a large phorusrhacid, as well as a tarsometatarsus lower leg bone and a phalanx toe bone. The discovery of Kelenken clarified the anatomy of large phorusrhacids, as these were previously much less well known. The closest living relatives of the phorusrhacids are the seriemas. Kelenken was found to belong in the subfamily Phorusrhacinae, along with for example Devincenzia.

<i>Aerosaurus</i> Extinct family of mammals

Aerosaurus is an extinct genus within Varanopidae, a family of non-mammalian synapsids. It lived between 252-299 million years ago during the Early Permian in North America. The name comes from Latin aes (aeris) “copper” and Greek sauros “lizard,” for El Cobre Canyon in northern New Mexico, where the type fossil was found and the site of former copper mines. Aerosaurus was a small to medium-bodied carnivorous synapsid characterized by its recurved teeth, triangular lateral temporal fenestra, and extended teeth row. Two species are recognized: A. greenleeorum (1937) and A. wellesi (1981).

<i>Biseridens</i> Extinct genus of therapsids

Biseridens is an extinct genus of anomodont therapsid, and one of the most basal anomodont genera known. Originally known from a partial skull misidentified as an eotitanosuchian in 1997, another well-preserved skull was found in the Qingtoushan Formation in the Qilian Mountains of Gansu, China, in 2009 that clarified its relationships to anomodonts, such as the dicynodonts.

Adapis is an extinct adapiform primate from the Eocene of Europe. While this genus has traditionally contained five species, recent research has recognized at least six morphotypes that may represent distinct species. Adapis holds the title of the first Eocene primate ever discovered. In 1821, Georges Cuvier, who is considered to be the founding father of paleontology, discovered Adapis in fissure fillings outside of Paris, France. Given its timing and appearance in the fossil record, Cuvier did not recognize the primate affinities of Adapis and first described it as a small extinct pachyderm; only later in the 19th century was Adapis identified as a primate.

Rooneyia viejaensis is a relatively small primate belonging to the extinct monotypic genus Rooneyia. Rooneyia viejaensis is known from the North American Eocene of the Sierra Vieja of West Texas; the species is only known from the type specimen. The lack of additional fossils at this time makes it difficult to hypothesize where and how Rooneyia may have evolved. The minimal wear upon the molar teeth of the specimen has led to the assumption that the type specimen is that of a young adult. Rooneyia does not consistently fall within any one group of fossil or extant primates.

<i>Mesopropithecus</i> Extinct genus of small to medium-sized lemur from Madagascar

Mesopropithecus is an extinct genus of small to medium-sized lemur, or strepsirrhine primate, from Madagascar that includes three species, M. dolichobrachion, M. globiceps, and M. pithecoides. Together with Palaeopropithecus, Archaeoindris, and Babakotia, it is part of the sloth lemur family (Palaeopropithecidae). Once thought to be an indriid because its skull is similar to that of living sifakas, a recently discovered postcranial skeleton shows Mesopropithecus had longer forelimbs than hindlimbs—a distinctive trait shared by sloth lemurs but not by indriids. However, as it had the shortest forelimbs of all sloth lemurs, it is thought that Mesopropithecus was more quadrupedal and did not use suspension as much as the other sloth lemurs.

<i>Regaliceratops</i> Extinct genus of dinosaurs

Regaliceratops is a monospecific genus of chasmosaurine ceratopsid dinosaur from Alberta, Canada that lived during the Late Cretaceous in what is now the St. Mary River Formation. The type and only species, Regaliceratops peterhewsi, is known only from an adult individual with a nearly complete skull lacking the lower jaw, which was nicknamed "Hellboy". Regaliceratops was named in 2015 by Caleb M. Brown and Donald M. Henderson. Regaliceratops has an estimated length of 5 metres (16 ft) and body mass of 2 metric tons. The skull of Regaliceratops displays features more similar to centrosaurines, which suggests convergent evolution in display morphology in ceratopsids.

<i>Ignacius</i> Extinct genus of mammals

Ignacius is a genus of extinct mammal from the early Cenozoic era. This genus is present in the fossil record from around 62-33 Ma. The earliest known specimens of Ignacius come from the Torrejonian of the Fort Union Formation, Wyoming and the most recent known specimens from Ellesmere Island in northern Canada. Ignacius is one of ten genera within the family Paromomyidae, the longest living family of any plesiadapiforms, persisting for around 30 Ma during the Paleocene and Eocene epochs. The analyses of postcranial fossils by paleontologists suggest that members of the family Paromomyidae, including the genus Ignacius, most likely possessed adaptations for arboreality.

Vetusodon is an extinct genus of cynodonts belonging to the clade Epicynodontia. It contains one species, Vetusodon elikhulu, which is known from four specimens found in the Late Permian Daptocephalus Assemblage Zone of South Africa. With a skull length of about 18 centimetres (7.1 in), Vetusodon is the largest known cynodont from the Permian. Through convergent evolution, it possessed several unusual features reminiscent of the contemporary therocephalian Moschorhinus, including broad, robust jaws, large incisors and canines, and small, single-cusped postcanine teeth.

References

  1. 1 2 3 Campbell, Bernard G., Loy, James D. (2000). Humankind Emerging (8th ed.). Allyn & Bacon. p. 85.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 3 4 5 Heesy, Christopher P. (2005-06-01). "Function of the mammalian postorbital bar". Journal of Morphology. 264 (3): 363–380. doi:10.1002/jmor.10334. ISSN   1097-4687. PMID   15844100. S2CID   13237813.
  3. Percival, Christopher J.; Richtsmeier, Joan T. (2017-02-23). Building bones : bone formation and development in anthropology. Percival, Christopher J.,, Richtsmeier, Joan T. Cambridge, United Kingdom. ISBN   9781107122789. OCLC   971531579.
  4. Prince, J. H. (1953). "Comparative anatomy of the orbit". Br J Physiol Optics. 10 (3): 144–154. PMID   13093965.
  5. Prince, J. H. (1956). "Comparative anatomy of the eye". Springfield, IL: Charles C. Thomas.
  6. Simons, J. L. (1962). "Fossil evidence relating to the early evolution of primate behavior". Ann N Y Acad Sci. 102 (2): 282–294. Bibcode:1962NYASA.102..282S. doi: 10.1111/j.1749-6632.1962.tb13646.x .
  7. 1 2 3 Cartmill, M. (1970). "The orbits of arboreal mammals: a reassessment of the arboreal theory of primate evolution". Ph.D. Dissertation. Chicago, IL: University of Chicago.
  8. Greaves, W. S. (1985-09-01). "The mammalian postorbital bar as a torsion-resisting helical strut". Journal of Zoology. 207 (1): 125–136. doi:10.1111/j.1469-7998.1985.tb04918.x. ISSN   1469-7998.
  9. Ravosa, Matthew J. (1991-11-01). "Interspecific perspective on mechanical and nonmechanical models of primate circumorbital morphology". American Journal of Physical Anthropology. 86 (3): 369–396. doi:10.1002/ajpa.1330860305. ISSN   1096-8644. PMID   1746644.
  10. Ravosa, Matthew J. (1991-05-01). "Ontogenetic perspective on mechanical and nonmechanical models of primate circumorbital morphology". American Journal of Physical Anthropology. 85 (1): 95–112. doi:10.1002/ajpa.1330850111. ISSN   1096-8644. PMID   1853947.
  11. Cartmill, M. (1972). "Arboreal adaptations and the origin of the Order Primates". Tuttle R, Editor. The Functional and Evolutionary Biology of Primates. Chicago: Aldine: 97–122.
  12. M., Cartmill (1980). "Morphology, function, and evolution of the anthropoid postorbital septum". Ciochon RL, Chiarelli AB, Editors. Evolutionary Biology of the New World Monkeys and Continental Drift.: 243–274. doi:10.1007/978-1-4684-3764-5_12. ISBN   978-1-4684-3766-9.
  13. Tsuihiji, Takanobu; Witmer, Lawrence M.; Watabe, Mahito; Barsbold, Rinchen; Tsogtbaatar, Khishigjav; Suzuki, Shigeru; Khatanbaatar, Purevdorj (2017-07-04). "New information on the cranial morphology of Avimimus (Theropoda: Oviraptorosauria)". Journal of Vertebrate Paleontology. 37 (4): e1347177. doi:10.1080/02724634.2017.1347177. ISSN   0272-4634. S2CID   28062102.
  14. Noble, Vivian E.; Kowalski, Erica M.; Ravosa, Matthew J. (2000-03-01). "Orbit orientation and the function of the mammalian postorbital bar". Journal of Zoology. 250 (3): 405–418. doi:10.1111/j.1469-7998.2000.tb00784.x. ISSN   1469-7998.
  15. Ravosa, Matthew J.; Noble, Vivian E.; Hylander, William L.; Johnson, Kirk R.; Kowalski, Erica M. (2000). "Masticatory stress, orbital orientation and the evolution of the primate postorbital bar". Journal of Human Evolution. 38 (5): 667–693. doi:10.1006/jhev.1999.0380. PMID   10799259.
  16. Heesy, C. P. (2003). The Evolution of Orbit Orientation in Mammals and the Function of the Primate Postorbital Bar (Thesis). Stony Brook University.