Lystrosauridae

Last updated

Lystrosauridae
Temporal range: Late Permian-late Triassic, 259–225  Ma
Lystr georg1DB.jpg
Life restoration of Lystrosaurus georgi
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Therapsida
Suborder: Anomodontia
Clade: Dicynodontia
Infraorder: Dicynodontoidea
Family: Lystrosauridae
Broom, 1903
Genera

?Basilodon Kammerer et al. 2011 [1]
?Jimusaria Sun, 1963 [1]
?Sintocephalus Van Hoepen, 1934 [1]
? Syops Kammerer et al. 2011 [1] [2]
Euptychognathus Kammerer et al. 2011 [1] [3]
Kwazulusaurus Maicsh, 2002 [4] [1] [3]
Lystrosaurus (type) Cope, 1870 [5]

Lystrosauridae is a family of dicynodont therapsids from the Permian and Triassic time periods. It includes two genera, Lystrosaurus and Kwazulusaurus . [6] Kwazulusaurus includes a single species, K. shakai, from the Late Permian of South Africa [7] and Lystrosaurus includes many species from the Late Permian and Early Triassic of South Africa, India, and Antarctica. [1]

Related Research Articles

<span class="mw-page-title-main">Dicynodont</span> Extinct clade of therapsids

Dicynodontia is an extinct clade of anomodonts, an extinct type of non-mammalian therapsid. Dicynodonts were herbivores that typically bore a pair of tusks, hence their name, which means 'two dog tooth'. Members of the group possessed a horny, typically toothless beak, unique amongst all synapsids. Dicynodonts first appeared in Southern Pangaea during the mid-Permian, ca. 270–260 million years ago, and became globally distributed and the dominant herbivorous animals in the Late Permian, ca. 260–252 Mya. They were devastated by the end-Permian Extinction that wiped out most other therapsids ca. 252 Mya. They rebounded during the Triassic but died out towards the end of that period. They were the most successful and diverse of the non-mammalian therapsids, with over 70 genera known, varying from rat-sized burrowers to elephant-sized browsers.

<i>Cistecephalus</i> Extinct genus of dicynodonts

Cistecephalus is an extinct genus of dicynodont therapsid from the Late Permian of southern Africa. It was a small, specialised, burrowing dicynodont, possibly with habits similar to a modern mole. The head was flattened and wedge-shaped, the body long, and the forelimbs very strong, with similarities in structure to the forelimb of modern burrowing mammals.

<span class="mw-page-title-main">Dromasauria</span>

"Dromasaurs" are an artificial grouping of small anomodont therapsids from the Middle and Late Permian of South Africa. They represent either a paraphyletic grade or a polyphyletic grouping of small non-dicynodont basal anomodonts rather than a clade, and as such are considered an invalid group today. "Dromasaurs" were historically united by their superficially similar appearances that were unlike other known anomodonts. They are all small in size with slender limbs and long tails, and have short skulls with very large eye sockets. "Dromasauria" traditionally includes three genera, all from the Karoo Supergroup of South Africa: Galepus, Galechirus, and Galeops. These genera have sometimes been divided into two subgroups, the monotypic family Galeopidae and the Galechiridae for Galechiris and Galepus.

<i>Dicynodon</i> Extinct genus of dicynodonts

Dicynodon is a genus of dicynodont therapsid that flourished during the Upper Permian period. Like all dicynodonts, it was an herbivorous animal. This synapsid was toothless, except for prominent tusks, hence the name. It probably cropped vegetation with a horny beak, much like a tortoise, while the tusks may have been used for digging up roots and tubers.

<i>Emydops</i> Extinct genus of dicynodonts

Emydops is an extinct genus of dicynodont therapsids from the Middle Permian to Late Permian of what is now South Africa. The genus is generally small and herbivorous, sharing the dicynodont synapomorphy of bearing two tusks. In the following years, the genus grew to include fourteen species. Many of these species were erected on the basis of differences in the teeth and the positioning of the frontal and parietal bones. A 2008 study narrowed Emydops down to two species, E. arctatus and the newly described E. oweni.

<i>Daptocephalus</i> Assemblage Zone

The Daptocephalus Assemblage Zone is a tetrapod assemblage zone or biozone found in the Adelaide Subgroup of the Beaufort Group, a majorly fossiliferous and geologically important geological Group of the Karoo Supergroup in South Africa. This biozone has outcrops located in the upper Teekloof Formation west of 24°E, the majority of the Balfour Formation east of 24°E, and the Normandien Formation in the north. It has numerous localities which are spread out from Colesberg in the Northern Cape, Graaff-Reniet to Mthatha in the Eastern Cape, and from Bloemfontein to Harrismith in the Free State. The Daptocephalus Assemblage Zone is one of eight biozones found in the Beaufort Group and is considered Late Permian (Lopingian) in age. Its contact with the overlying Lystrosaurus Assemblage Zone marks the Permian-Triassic boundary.

<span class="mw-page-title-main">Stahleckeriidae</span> Extinct family of dicynodonts

Stahleckeriidae is a family of dicynodont therapsids whose fossils are known from the Triassic of North America, South America, Asia and Africa.

Sangusaurus is an extinct genus of large dicynodont synapsid with two recognized species: S. edentatus and S. parringtonii. Sangusaurus is named after the Sangu stream in eastern Zambia near to where it was first discovered + ‘saur’ which is the Greek root for lizard. Sangusaurus fossils have been recovered from the upper parts of the Ntawere Formation in Zambia and of the Lifua Member of the Manda Beds in Tanzania. The earliest study considered Sangusaurus a kannemeyeriid dicynodont, but more recent phylogenetic analyses place Sangusaurus within the stahleckeriid clade of Dicynodontia. Until recently, little work had been done to describe Sangusaurus, likely due to the fact that only four incomplete fossil specimens have been discovered.

<i>Tetragonias</i> Extinct genus of dicynodonts

Tetragonias is an extinct genus of dicynodont from the Anisian Manda Beds of Tanzania. With tetra meaning “four,” and goni meaning “angle,” the name references the square shape of the Tetragonias skull when viewed dorsally. Not to be confused with the plant Tetragonia,Tetragonias were dicynodont anomodonts discovered in the late 1960s by paleontologist A. R. I. Cruickshank in the Manda Formation. Only the type species, T. njalilus, has been recognized.

<i>Vivaxosaurus</i> Extinct genus of dicynodonts

Vivaxosaurus is a genus of dicynodont from Late Permian (Changhsingian) of Russia. It has been found at Sokolki on the Northern Dvina River near Kotlas in Arkhangelsk Oblast, Russia. It lived during the latest Permian, and was a contemporary of Inostrancevia, Scutosaurus and Dvinia. Like all members of the genus, this animal was toothless, except for prominent tusks, and probably cropped vegetation with a horny beak, like a tortoise.

<span class="mw-page-title-main">Chainosauria</span> Extinct clade of therapsids

Chainosauria is a large and speciose clade of anomodont therapsid that includes the highly diverse dicynodonts and a small number of closely related basal genera —although the total composition and taxonomic scope of Chainosauria is in flux. Chainosauria was named in 1923 to group together the dicynodonts and their close relatives, namely three small anomodont genera from South Africa that made up the now defunct group 'Dromasauria'. The name soon fell into disuse, however, as it was functionally replaced by Anomodontia. Chainosauria was later revived cladistically in 2009, preserving the association of dicynodonts and the 'dromasaurs' and has since served in effect as both a cladistic and a biogeographic counterpart to the Laurasian venyukovioids, with early chainosaurs appearing to have been a Gondwanan radiation.

<span class="mw-page-title-main">Pylaecephalidae</span> Extinct family of dicynodonts

Pylaecephalidae is a family of dicynodont therapsids that includes Diictodon, Robertia, and Prosictodon from the Permian of South Africa. Pylaecephalids were small burrowing dicynodonts with long tusks. The family was first named in 1934 and was redefined in 2009. Diictodontidae and Robertiidae are considered junior synonyms of Pylaecephalidae; although Pylaecephalus itself is considered a junior synonym of Diictodon, the name Pylaecephalidae predates these names and therefore takes priority.

<span class="mw-page-title-main">Kannemeyeriiformes</span> Extinct clade of dicynodonts

Kannemeyeriiformes is a group of large-bodied Triassic dicynodonts. As a clade, Kannemeyeriiformes has been defined to include the species Kannemeyeria simocephalus and all dicynodonts more closely related to it than to the species Lystrosaurus murrayi.

Peramodon is an extinct genus of dicynodont therapsid from the Late Permian Scutosaurus karpinskii Zone of the Salarevo Formation of Russia. The type species, P. amalitzkii, was first named in 1926 as Dicynodon amalitzkii.

Keyseria is an extinct genus of dicynodont therapsid. The type species K. benjamini was first named in 1948 as Dicynodon benjamini.

Syops is an extinct genus of dicynodont therapsid. The type species S. vanhoepeni was first named in 1938 as Dicynodon vanhoepeni. Fossils of the genus have been found in the Cistecephalus Assemblage Zone in the Usili Formation of the Ruhuhu Basin, Tanzania and the Upper Madumabisa Mudstone Formation of the Luangwa Basin, Zambia. Its phylogenetic placement is somewhat uncertain, with multiple different studies finding it as either a basal geikiid, rhachiocephalid a dicynodontoid more derived than the most basal genera but less derived than Lystrosauridae, or a lystrosaurid.

<i>Basilodon</i> Extinct genus of dicynodonts

Basilodon is an extinct genus of dicynodont therapsid. The type species, Basilodon woodwardi was originally named in 1921 as Dicynodon woodwardi. Fossils have been found in the Cistecephalus Assemblage Zone and Dicynodon Assemblage Zone of the Balfour Formation of the Beaufort Group in South Africa.

<span class="mw-page-title-main">Bidentalia</span> Extinct clade of dicynodonts

Bidentalia is a group of dicynodont therapsids. Bidentalia was one of the first names used to describe dicynodonts; the group was established in 1876, while the name "bidentals" dates back as far as 1845. With the increasing prominence of phylogenetics, the group was redefined as a clade in 2009. Bidentalia is now considered a stem-based taxon that includes all taxa more closely related to Aulacephalodon bainii and Dicynodon lacerticeps than Emydops arctatus.

<i>Jimusaria</i> Extinct genus of dicynodonts

Jimusaria is an extinct genus of dicynodont therapsid from the Late Permian (Changhsingian) of China. The type species J. sinkianensis from the Guodikeng Formation in Xinjiang, was originally named as a species of Dicynodon, the first from Asia, but was given its own genus in 1963 before being sunk back into Dicynodon in 1988. The genus was resurrected in 2011 by palaeontologist Christian Kammerer in a taxonomic revision of the genus Dicynodon. Jimusaria was a mid-sized dicynodont, and was similar in appearance to the South African Dicynodon, but differed from it in features such as its narrower snout. A second species, Jimusaria monanensis was described from the Naobaogou Formation of northern China in 2023.

<i>Turfanodon</i> Extinct genus of dicynodonts

Turfanodon is an extinct genus of dicynodont therapsid from the Late Permian Sunan, Guodikeng, and Naobaogou Formations of China. The holotype of T. bogdaensis was discovered between 1963-1964 and was originally named in 1973 by A. Sun with the type species Turfanodon bogdaensis, Turfanodon was reclassified as a junior synonym of the related Dicynodon in 1988 by G. M. King. T. bogdaensis remained a species of Dicynodon for over two decades before the genus was reinstated in 2011 in a revision of the taxonomy of Dicynodon by palaeontologist Christian Kammerer. A second species from Inner Mongolia, T. jiufengensis, was named in 2021 by palaeontologist Jun Liu from a nearly complete skeleton and other referred bones. Turfanodon was a relatively large dicynodont, and similar in appearance to the related Daptocephalus from South Africa.

References

  1. 1 2 3 4 5 6 7 Kammerer, C.F.; Angielczyk, K.D.; Fröbisch, J. (2011). "A comprehensive taxonomic revision of Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny, biogeography, and biostratigraphy". Journal of Vertebrate Paleontology. 31 (Suppl. 1): 1–158. Bibcode:2011JVPal..31S...1K. doi:10.1080/02724634.2011.627074. S2CID   84987497.
  2. Angielczyk, K. D.; Liu, J.; Yang, W. (2021). "A Redescription of Kunpania scopulusa, a Bidentalian Dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of Northwestern China". Journal of Vertebrate Paleontology. 41 (1): e1922428. Bibcode:2021JVPal..41E2428A. doi:10.1080/02724634.2021.1922428. S2CID   236406006.
  3. 1 2 Kammerer, C. F.; Fröbisch, J. R.; Angielczyk, K. D. (2013). Farke, Andrew A (ed.). "On the Validity and Phylogenetic Position of Eubrachiosaurus browni, a Kannemeyeriiform Dicynodont (Anomodontia) from Triassic North America". PLOS ONE. 8 (5): e64203. Bibcode:2013PLoSO...864203K. doi: 10.1371/journal.pone.0064203 . PMC   3669350 . PMID   23741307.
  4. The Paleobiology Database: Kwazulusaurus
  5. The Paleobiology Database: Lystrosaurus
  6. The Paleobiology Database: Lystrosauridae
  7. Maisch, M.W. (2002). "A new basal lystrosaurid dicynodont from the Upper Permian of South Africa". Palaeontology. 45 (2): 343–359. Bibcode:2002Palgy..45..343M. doi: 10.1111/1475-4983.00240 .