Triopticus

Last updated

Triopticus
Temporal range: Carnian - Norian, 229–226  Ma
O
S
D
C
P
T
J
K
Pg
N
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Archosauromorpha
Clade: Archosauriformes
Clade: Protopyknosia
Genus: Triopticus
Stocker et al., 2016
Species:
T. primus
Binomial name
Triopticus primus
Stocker et al., 2016

Triopticus is a genus of archosauriform reptile from the Late Triassic of Texas, United States. It contains a single species, Triopticus primus, described in 2016 by Stocker et al. It has an unusually domed head reminiscent of the later pachycephalosaurian dinosaurs in an example of convergent evolution. [1]

Contents

Description

The portion of the head that is preserved shows remarkable similarities to the specialized heads of pachycephalosaurs. Five bosses, or rounded protuberances of bone are visible on the fossil, with one on the frontal bone and two pairs behind (respectively on the postorbital bone and the squamosal/parietal bones) separated by a shallow groove. The backmost pair of bosses form a thick shelf that stretches outwards and backwards over the rear end of the skull, comparable to the domes of pachycephalosaurs and the frills of ceratopsians. [1] The bosses have very roughly textured surfaces, suggesting that they would have been covered by keratin in life. [2]

CT scans show that the bosses internally have three distinct layers of bone, with a dense innermost layer which resembles the typical skull roof in texture, followed by a spongy, porous layer filled with blood vessels, and the least dense third layer close to the surface. Pachycephalosaurs like Stegoceras also similarly have three layers of bone inside its dome, [3] but the second layer is the least dense as opposed to the third. However, this difference may arise from differential deposition of minerals in the skull. [1]

The deep pit in the back of the skull of Triopticus likely arises from the two back pairs of bosses growing around this region, not unlike the holes of doughnuts. It is also possible that the pit is an opening for the pineal gland, as it is in approximately the right position, but this is less likely because no other archosauriforms have such an opening, [4] and the opening does not appear to be connected to any internal structures. The pit has the same texture as the bosses, suggesting that it was also potentially covered in keratin. [1]

The eye socket is very large, and it is surrounded by mineralized cartilage, a trait only seen otherwise in pachycephalosaurs. CT scans also revealed large optic nerves as well as long semicircular canals and a relatively large cerebellar flocculus (both involved in stabilizing gaze, [5] [6] although long semicircular canals are also associated with bipedal stances [7] ). These traits suggest that Triopticus was a very visually-oriented animal. Otherwise, the structure of the brain is generally similar to other archosauriforms, although it superficially resembles that of Stegoceras. [1]

Despite the heavy similarity of Triopticus to pachycephalosaurs, there are a number of traits that indicate its archosauriform identity. In Triopticus, the parabasisphenoid bone is horizontal, the posttemporal fenestrae at the back of the braincase are not sealed off at all, and the region where the squamosal bone and quadrate bone come into contact is not externally visible, all of which indicate that it is not a basal dinosaur. [1] Additionally, a narrow strip of smooth bone on the lacrimal bone in front of the eye sockets forms the margin of the antorbital fenestra and the associated antorbital fossa, which are distinctly archosauriform characteristics. [4]

Discovery and naming

The only known specimen of Triopticus, TMM 31100-1030, consists of a braincase containing part of the eye socket. It was discovered in Quarry 3 of the Otis Chalk in Howard County, Texas, which is part of the Dockum Group. While the Otis Chalk itself has not yet been dated, comparisons with the animal fauna of other sites (including the Pekin Formation of North Carolina) suggest a potential age between 229 Ma and 226 Ma. [1]

The genus name of Triopticus is derived from the Latin tri ("three") and optic ("vision"), in reference to a large pit in the back of the skull reminiscent of a third eye socket. The species name, primus, is the Latin word for "first". [1]

Classification

A phylogenetic analysis was conducted in 2016 in an attempt to elucidate the relationships of Triopticus. The phylogenetic tree recovered by the analysis, reproduced below, found Triopticus in a polytomy with other basal archosauriforms. [1]

Archosauromorpha

Paleoecology

In the Otis Chalk assemblage, Triopticus lived alongside a number of other archosauriforms including the allokotosaurs Trilophosaurus and Malerisaurus ; the doswelliid Doswellia ; the phytosaurs Parasuchus and Angistorhinus ; the aetosaurs Longosuchus , Lucasuchus , and Coahomasuchus ; the shuvosaurid Effigia ; the silesaurid Silesaurus ; the lagerpetid dinosauromorph Dromomeron , and the coelophysoid theropod dinosaur Lepidus . Some of these also exhibit evolutionary convergence upon archosaurs living after the Triassic–Jurassic extinction event - the phytosaurs resemble the thalattosuchians, gavialoids, and spinosaurids, the aetosaurs resemble the ankylosaurs, and the shuvosaurids resemble the ornithomimosaurs. [1]

Related Research Articles

<span class="mw-page-title-main">Archosaur</span> Group of diapsids broadly classified as reptiles

Archosauria is a clade of diapsid sauropsid tetrapods, with birds and crocodilians being the only living representatives. Archosaurs are broadly classified as reptiles, in the cladistic sense of the term, which includes birds. Extinct archosaurs include non-avian dinosaurs, pterosaurs and extinct relatives of crocodilians. Modern paleontologists define Archosauria as a crown group that includes the most recent common ancestor of living birds and crocodilians, and all of its descendants. The base of Archosauria splits into two clades: Pseudosuchia, which includes crocodilians and their extinct relatives; and Avemetatarsalia, which includes birds and their extinct relatives.

<span class="mw-page-title-main">Archosauriformes</span> Clade of reptiles

Archosauriformes is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian and persist to the present day as the two surviving archosaur groups: crocodilians and birds.

<i>Stegoceras</i> Genus of reptiles (fossil)

Stegoceras is a genus of pachycephalosaurid (dome-headed) dinosaur that lived in what is now North America during the Late Cretaceous period, about 77.5 to 74 million years ago (mya). The first specimens from Alberta, Canada, were described in 1902, and the type species Stegoceras validum was based on these remains. The generic name means "horn roof", and the specific name means "strong". Several other species have been placed in the genus over the years, but these have since been moved to other genera or deemed junior synonyms. Currently only S. validum and S. novomexicanum, named in 2011 from fossils found in New Mexico, remain. The validity of the latter species has also been debated.

<i>Gracilisuchus</i> Genus of fossil reptiles

Gracilisuchus is an extinct genus of tiny pseudosuchian from the Late Triassic of Argentina. It contains a single species, G. stipanicicorum, which is placed in the clade Suchia, close to the ancestry of crocodylomorphs. Both the genus and the species were first described by Alfred Romer in 1972.

<i>Poposaurus</i> Extinct genus of Archosaur

Poposaurus is an extinct genus of pseudosuchian archosaur from the Late Triassic of the southwestern United States. It belongs to the clade Poposauroidea, an unusual group of Triassic pseudosuchians that includes sail-backed, beaked, and aquatic forms. Fossils have been found in Wyoming, Utah, Arizona, and Texas. Except for the skull, most parts of the skeleton are known. The type species, P. gracilis, was described and named by Maurice Goldsmith Mehl in 1915. A second species, P. langstoni, was originally the type species of the genus Lythrosuchus. Since it was first described, Poposaurus has been variously classified as a dinosaur, a phytosaur, and a "rauisuchian".

<span class="mw-page-title-main">Antorbital fenestra</span> Opening in the skull in front of the eye sockets, largely associated with archosauriforms

An antorbital fenestra is an opening in the skull that is in front of the eye sockets. This skull character is largely associated with archosauriforms, first appearing during the Triassic Period. Among extant archosaurs, birds still possess antorbital fenestrae, whereas crocodylians have lost them. The loss in crocodylians is believed to be related to the structural needs of their skulls for the bite force and feeding behaviours that they employ. In some archosaur species, the opening has closed but its location is still marked by a depression, or fossa, on the surface of the skull called the antorbital fossa.

<i>Doswellia</i> Extinct genus of reptiles

Doswellia is an extinct genus of archosauriform from the Late Triassic of North America. It is the most notable member of the family Doswelliidae, related to the proterochampsids. Doswellia was a low and heavily built carnivore which lived during the Carnian stage of the Late Triassic. It possesses many unusual features including a wide, flattened head with narrow jaws and a box-like rib cage surrounded by many rows of bony plates. The type species Doswellia kaltenbachi was named in 1980 from fossils found within the Vinita member of the Doswell Formation in Virginia. The formation, which is found in the Taylorsville Basin, is part of the larger Newark Supergroup. Doswellia is named after Doswell, the town from which much of the taxon's remains have been found. A second species, D. sixmilensis, was described in 2012 from the Bluewater Creek Formation of the Chinle Group in New Mexico; however, this species was subsequently transferred to a separate doswelliid genus, Rugarhynchos. Bonafide Doswellia kaltenbachi fossils are also known from the Chinle Formation of Arizona.

<i>Turfanosuchus</i> Extinct genus of reptiles

Turfanosuchus is a genus of archosauriform reptile, likely a gracilisuchid archosaur, which lived during the Middle Triassic (Anisian) of northwestern China. The type species, T. dabanensis, was described by C.C. Young in 1973, based on a partially complete but disarticulated fossil skeleton found in the Kelamayi Formation of the Turfan Basin.

<i>Vancleavea</i> Extinct genus of reptiles

Vancleavea is a genus of extinct, armoured, non-archosaurian archosauriforms from the Late Triassic of western North America. The type and only known species is V. campi, named by Robert Long & Phillip A Murry in 1995. At that time, the genus was only known from fragmentary bones including osteoderms and vertebrae. However, since then many more fossils have been found, including a pair of nearly complete skeletons discovered in 2002. These finds have shown that members of the genus were bizarre semiaquatic reptiles. Vancleavea individuals had short snouts with large, fang-like teeth, and long bodies with small limbs. They were completely covered with bony plates known as osteoderms, which came in several different varieties distributed around the body. Phylogenetic analyses by professional paleontologists have shown that Vancleavea was an archosauriform, part of the lineage of reptiles that would lead to archosaurs such as dinosaurs and crocodilians. Vancleavea lacks certain traits which are present in most other archosauriforms, most notably the antorbital, mandibular and supratemporal fenestrae, which are weight-saving holes in the skulls of other taxa. However, other features clearly support its archosauriform identity, including a lack of intercentra, the presence of osteoderms, an ossified laterosphenoid, and several adaptations of the femur and ankle bones. In 2016, a new genus of archosauriform, Litorosuchus, was described. This genus resembled both Vancleavea and more typical archosauriforms in different respects, allowing Litorosuchus to act as a transitional fossil linking Vancleavea to less aberrant archosauriforms.

<i>Tarjadia</i> Extinct genus of reptiles

Tarjadia is an extinct genus of erpetosuchid pseudosuchian, distantly related to modern crocodilians. It is known from a single species, T. ruthae, first described in 1998 from the Middle Triassic Chañares Formation in Argentina. Partial remains have been found from deposits that are Anisian-Ladinian in age. Long known mostly from osteoderms, vertebrae, and fragments of the skull, specimens described in 2017 provided much more anatomical details and showed that it was a fairly large predator. Tarjadia predates known species of aetosaurs and phytosaurs, two Late Triassic groups of crurotarsans with heavy plating, making it one of the first heavily armored archosaurs. Prior to 2017, most studies placed it outside Archosauria as a member of Doswelliidae, a family of heavily armored and crocodile-like archosauriforms. The 2017 specimens instead show that it belonged to the Erpetosuchidae.

<span class="mw-page-title-main">Suchia</span> Clade of reptiles

Suchia is a clade of archosaurs containing the majority of pseudosuchians. It was defined as the least inclusive clade containing Aetosaurus ferratus, Rauisuchus tiradentes, Prestosuchus chiniquensis, and Crocodylus niloticus by Nesbitt (2011). Generally the only pseudosuchian group which is omitted from Suchia is the family Ornithosuchidae, although at least one analysis classifies ornithosuchids as close relatives of erpetosuchids and aetosaurs. Phytosaurs are also excluded from Suchia, although it is not certain whether they qualify as pseudosuchians in the first place.

<span class="mw-page-title-main">Poposauroidea</span> Extinct clade of reptiles

Poposauroidea is a clade of advanced pseudosuchians. It includes poposaurids, shuvosaurids, ctenosauriscids, and other unusual pseudosuchians such as Qianosuchus and Lotosaurus. It excludes most large predatory quadrupedal "rauisuchians" such as rauisuchids and "prestosuchids". Those reptiles are now allied with crocodylomorphs in a clade known as Loricata, which is the sister taxon to the poposauroids in the clade Paracrocodylomorpha. Although it was first formally defined in 2007, the name "Poposauroidea" has been used for many years. The group has been referred to as Poposauridae by some authors, although this name is often used more narrowly to refer to the family that includes Poposaurus and its close relatives.

<i>Foraminacephale</i> Extinct genus of dinosaurs

Foraminacephale is a genus of pachycephalosaurid dinosaur from Late Cretaceous deposits of Canada.

<span class="mw-page-title-main">Erpetosuchidae</span> Extinct family of reptiles

Erpetosuchidae is an extinct family of pseudosuchian archosaurs. Erpetosuchidae was named by D. M. S. Watson in 1917 to include Erpetosuchus. It includes the type species Erpetosuchus granti from the Late Triassic of Scotland, Erpetosuchus sp. from the Late Triassic of eastern United States and Parringtonia gracilis from the middle Middle Triassic of Tanzania; the group might also include Dyoplax arenaceus from the Late Triassic of Germany, Archeopelta arborensis and Pagosvenator candelariensis from Brazil and Tarjadia ruthae from Argentina.

<i>Acrotholus</i> Extinct genus of dinosaurs

Acrotholus is an extinct genus of pachycephalosaur dinosaur that lived during the Santonian of the late Cretaceous, in the Milk River Formation of Canada. The type species, A. audeti, was named after Roy Audet allowing access to his ranch leading to the discovery of the species. The discovery of this specimen lead to several new revelations in the fossil records questioning the preservation of small-bodied organisms along with the evolution of early pachycephalosaurs. The iconic cranial dome found on Acrotholus makes it one of the earliest indisputable known members of the pachycephalosaur family.

<i>Asperoris</i> Extinct genus of reptiles

Asperoris is an extinct genus of archosauriform reptile known from the Middle Triassic Manda Beds of southwestern Tanzania. It is the first archosauriform known from the Manda Beds that is not an archosaur. However, its relationships with other non-archosaurian archosauriforms are uncertain. It was first named by Sterling J. Nesbitt, Richard J. Butler and David J. Gower in 2013 and the type species is Asperoris mnyama. Asperoris means "rough face" in Latin, referring to the distinctive rough texture of its skull bones.

Nundasuchus is an extinct genus of crurotarsan, possibly a suchian archosaur related to Paracrocodylomorpha. Remains of this genus are known from the Middle Triassic Manda beds of southwestern Tanzania. It contains a single species, Nundasuchus songeaensis, known from a single partially complete skeleton, including vertebrae, limb elements, osteoderms, and skull fragments.

<i>Rugarhynchos</i> Extinct genus of reptiles

Rugarhynchos is an extinct genus of doswelliid archosauriform from the Late Triassic of New Mexico. The only known species is Rugarhynchos sixmilensis. It was originally described as a species of Doswellia in 2012, before receiving its own genus in 2020. Rugarhynchos was a close relative of Doswellia and shared several features with it, such as the absence of an infratemporal fenestra and heavily textured skull bones. However, it could also be distinguished by many unique characteristics, such as a thick diagonal ridge on the side of the snout, blunt spikes on its osteoderms, and a complex suture between the quadratojugal, squamosal, and jugal. Non-metric multidimensional scaling and tooth morphology suggest that Rugarhynchos had a general skull anatomy convergent with some crocodyliforms, spinosaurids, and phytosaurs. However, its snout was somewhat less elongated than those other reptiles.

<i>Polymorphodon</i> Extinct genus of reptiles

Polymorphodon is an extinct genus of archosauriform reptile from the Middle Triassic of Germany. The only known species is Polymorphodon adorfi, discovered in Lower Keuper deposits at a quarry in Eschenau, Germany. Polymorphodon is notable for its heterodont dentition, with long and conical premaxillary teeth followed by thin maxillary teeth with large serrations. Maxillary teeth near the back of the mouth are short and leaf-shaped, similar to some living and extinct reptiles with a herbivorous or omnivorous diet. This may suggest that Polymorphodon had some reliance on plants in its diet, a rarity among basal archosauriforms, most of which are carnivores.

Syntomiprosopus is an extinct genus of archosauriform, possibly a crocodylomorph from the Late Triassic period of Arizona. The type and only known species is S. sucherorum. Syntomiprosopus was unusually short-snouted, comparable to the Late Cretaceous notosuchian Simosuchus, and is regarded as an example of convergent evolution between Triassic stem-archosaurs and Cretaceous archosaurs.

References

  1. 1 2 3 4 5 6 7 8 9 10 Stocker, M.R.; Nesbitt, S.J.; Criswell, K.E.; Parker, W.G.; Witmer, L.M.; Rowe, T.B.; Ridgely, R.; Brown, M.A. (2016). "A Dome-Headed Stem Archosaur Exemplifies Convergence among Dinosaurs and Their Distant Relatives". Current Biology. 26 (19): 2674–2680. doi: 10.1016/j.cub.2016.07.066 . PMID   27666971.
  2. Hieronymous, T.L.; Witmer, L.M.; Tanke, D.H.; Currie, P.J. (2009). "The Facial Integument of Centrosaurine Ceratopsids: Morphological and Histological Correlates of Novel Skin Structures". Anatomical Record. 292 (9): 1370–1396. doi: 10.1002/ar.20985 . PMID   19711467. S2CID   13465548.
  3. Goodwin, M.B.; Horner, J.R. (2004). "Cranial histology of pachycephalosaurs (Ornithischia: Marginocephalia) reveals transitory structures inconsistent with head-butting behavior" (PDF). Paleobiology. 30 (2): 253–267. doi:10.1666/0094-8373(2004)030<0253:CHOPOM>2.0.CO;2. S2CID   84961066.
  4. 1 2 Nesbitt, S.J. (2011). "The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades". Bulletin of the American Museum of Natural History. 352: 1–292. doi: 10.1206/352.1 . hdl:2246/6112. S2CID   83493714.
  5. Voogd, J.; Wylie, D.R.W. (2004). "Functional and anatomical organization of floccular zones: A preserved feature in vertebrates". Journal of Comparative Neurology. 470 (2): 107–112. doi: 10.1002/cne.11022 . PMID   14750155. S2CID   10827651.
  6. Hullar, T.E. (2006). "Semicircular canal geometry, afferent sensitivity, and animal behavior". The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 288A (4): 466–472. doi:10.1002/ar.a.20304. PMC   2570000 . PMID   16550591.
  7. Georgi, J.A.; Sipla, J.S.; Forster, C.A. (2013). "Turning Semicircular Canal Function on Its Head: Dinosaurs and a Novel Vestibular Analysis". PLOS ONE. 8 (3): e58517. Bibcode:2013PLoSO...858517G. doi: 10.1371/journal.pone.0058517 . PMC   3596285 . PMID   23516495.