Tasmaniosaurus Temporal range: Early Triassic, | |
---|---|
Restored skull | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Clade: | Archosauromorpha |
Clade: | Crocopoda |
Genus: | † Tasmaniosaurus Camp & Banks, 1978 |
Type species | |
†Tasmaniosaurus triassicus Camp & Banks, 1978 |
Tasmaniosaurus ('lizard from Tasmania', although this genus is not a true lizard) is an extinct genus of archosauromorph reptile known from the Knocklofty Formation (Early Triassic) of West Hobart, Tasmania, Australia. The type species is T. triassicus. This genus is notable not only due to being one of the most complete Australian Triassic reptiles known, but also due to being a very close relative of Archosauriformes. Once believed to be a proterosuchid, this taxon is now believed to have been intermediate between advanced non-archosauriform archosauromorphs such as Prolacerta , and basal archosauriforms such as Proterosuchus . Features traditionally used to define Archosauria and later Archosauriformes, such as the presence of an antorbital fenestra and serrated teeth, are now known to have evolved prior to those groups due to their presence in Tasmaniosaurus. [1]
First named as a nomen nudum in 1974, the genus received a formal description by paleontologists Charles Lewis Camp and Maxwell Banks in 1978. [2] [3] These descriptions considered it a proterosuchid archosaur. A redescription by British paleontologist Tony Thulborn in 1986 agreed with this interpretation. [4] Since then, cladistic work has redefined the term "archosaur" to only include Avemetatarsalia (a lineage including pterosaurs and dinosaurs, such as modern birds) and Pseudosuchia (a lineage including modern crocodylians and their extinct relatives such as aetosaurs and raisuchids). As proterosuchids evolved prior to the split between these two groups, they are not considered archosaurs using this definition. In lieu of this revelation, the clade Archosauriformes is now used to encompass proterosuchids and archosaurs (as well as several other families) under one group. Archosauriformes is itself a component of Archosauromorpha, a broader clade which refers to all animals more closely related to archosaurs than to lepidosaurs, the other main group of reptiles including lizards, snakes, and tuataras.
During this transition, Tasmaniosaurus remained ignored. This was rectified when the genus received a thorough redescription by Martin Ezcurra in 2014. [5] In 2016, Ezcurra also included the genus in his comprehensive analysis of Archosauromorphs, which indicated that proterosuchidae (as it was usually defined) was an invalid polyphyletic grouping. This analysis included a phylogenetic analysis which incorporated Tasmaniosaurus and found that it was not in fact a proterosuchid. Rather, it was found to be the sister taxon of Archosauriformes, meaning that it was the closest known relative of members of that clade without technically being part of it (as it was not closer to either proterosuchids or other archosauriforms). [1]
Tasmaniosaurus is known from a single partial skeleton, UTGD (University of Tasmania School of Earth Sciences) 54655. This holotype specimen consists of various skull fragments, vertebrae, ribs, an interclavicle, and bones of the back legs. The specimen as a whole is jumbled and missing many elements, and some of the bones preserved within it have not been identified with absolute certainty. Even so, it is considered one of the most complete skeletons of any Triassic reptile unearthed in Australia. A few other bone fragments collected around Tasmania have been occasionally referred to this genus, but they are currently considered indeterminate and lost. [1]
The premaxilla (a tooth-bearing bone forming the snout tip) was initially mistaken to be very short due to crushing. However, it was later found to be proportionally similar to that of most archosauriforms. It is rounded from the front and possesses a long and tall 'maxillary process' (rear extension). By comparing the orientation of this process with the tooth row, the snout tip was determined to be only slightly projected downwards, in contrast to the drastically hooked snout of putative proterosuchids. Although only a few teeth are preserved in the right premaxilla, a count of the tooth sockets helps estimates that 6 or 7 teeth were present in each premaxilla during life. [5]
The maxilla (a tooth-bearing bone on the side of the snout) has a long tooth row and a tapering rear tip. The front tip also forms a tapering 'anterior process' which smoothly transitions into a triangular and upward-projecting 'ascending process'. This contrasts with proterosuchids, which have a less abruptly tapering anterior process, and erythrosuchids, which have a pillar-like ascending process. The shape of the upper edge of the maxilla indicates that Tasmaniosaurus had an antorbital fenestra, a hole in the side of the snout which seemingly characterizes archosauriforms. The presence of an antorbital fenestra supports the very close relation between Tasmaniosaurus and archosauriforms. As the skull bones are all preserved lying face down, it is difficult to assess whether an antorbital fossa (a depression which rings around the antorbital fenestra) was also present. The left maxilla preserves 14 teeth while the right preserves 9. An estimated 21 teeth were present in each maxilla during life. The lacrimal bone (in front of the orbit, or eye hole) is L-shaped and particularly similar to that of Proterosuchus . On the medial (inside) face, a large tuberosity (bony bump) is present where the forward and downward extensions meet. A partial pterygoid bone (a tooth-bearing part of the roof of the mouth) is preserved in the specimen, and is almost identical to that of Proterosuchus and Prolacerta . It preserves six or seven teeth, and likely represents the front part of the pterygoid. [5]
Several bones of the skull roof were also preserved connected to each other in the holotype. Camp & Banks considered these to be frontals, parietals, an interparietal, and postfrontals, all bones of the rear of the skull. Thulborn instead interpreted them as frontals, nasals, and postorbitals, on the upper side of the snout. Most recently, Ezcurra discussed both of these interpretations and concluded that Camp & Banks were correct in their identification of the bones. The frontals are long and unfused, and possess thin "finger-like" extensions which would have connected to the nasals. Each postfrontal, which formed the upper rear edge of the orbit, is similar to that of Archosaurus but the extent of its contact with the other bones is unclear. The parietals are unfused and have wide and concave outer edges, forming the inner edge of the upper temporal fenestrae (a pair of large holes on each side of the back of the head). The back of each parietal has a long bony rod which extends backwards and curves outwards (a posterolateral process), forming an angle of about 20 degrees with the midline of the skull. A large crescent shape interparietal lies at the back of the skull roof, between the posterolateral processes of the parietals, similar to proterosuchids. Two smaller bone fragments were also found near the skull roof and may have been a supraoccipital and epipterygoid (both bones of the braincase), although such an assignment is uncertain. [5]
The dentaries (the main tooth-bearing bones of the lower jaw) are long, thin, and straight, similar to those of Prolacerta and Protorosaurus but contrasting with the robust and/or upwards-curving jaws of most basal archosauriforms. In fact, the tooth row at the very tip of the jaw slightly curves downward, forcing the first few teeth to project a bit forwards as well as upwards. The rear edge of each dentary has two tapering bony extensions, a short (but partially broken) 'posterodorsal process' on top and a much more prominent 'central posterior process' on the bottom. The dentaries are long enough that the front tip extends almost as far forward as the snout tip while the tooth row would extend almost as far back as the tooth row of the maxilla, both features unlike Prolacerta and Proterosuchus. Only 5 teeth are preserved in the left dentary, but more than 22 were likely present in life. A thick left splenial (a bone of the inside and lower edge of the lower jaw), similar to that of Proterosuchus, is also preserved. [5]
The teeth of Tasmaniosaurus are ankylothecodont, meaning that they are both fused to the skull and jaw bones by thin ridges (ankylodont) as well as placed in deep sockets (thecodont). They are also serrated, similar to those of archosauriforms but unlike practically every other archosauromorph. Although not all of the teeth are preserved in good condition, those that are, have a curved shape and are compressed from the side, making them knife-like, similar to most carnivorous archosauromorphs. [5]
The Tasmaniosaurus holotype preserves 2 presacral (pre-hip) vertebrae, one probably from near the transition between the neck and back and the other probably from mid-way down the back. The cervico-dorsal (neck-back) vertebra is slightly compressed with a shallow depression each side, and does not possess an opening for the spinal cord. Both the neural arch (the portion of the vertebra typically above the spinal cord) and neural spine (a plate-like extension on the top of the vertebra) are tall. The second preserved vertebra, a dorsal, is incomplete but similar to the cervico-dorsal. A curving table-like ridge (lamina) on the side of the vertebra extends forward (as a 'prezygodiapophyseal lamina') and then dips downwards (as a 'paradiapophyseal lamina') towards the front of the vertebra. Various other archosauromorphs also have prezygodiapophyseal laminae, but they are notably lacking in Proterosuchus. On the other hand, the tip of the neural spine does not expand outwards in this vertebra, similar to the condition in Proterosuchus. A few putative intercentra (small bones wedged between the lower part of the vertebrae) have also been reported in Tasmaniosaurus. [5]
Various caudal (tail) vertebrae from different parts of the tail have been preserved, some articulating with each other. Vertebrae believed to have been at the front of the tail are more simple than the dorsal vertebrae, but seem to retain neural spines. On the other hand, vertebrae towards the rear of the tail are very simple, lacking any distinguishable neural spines, articulating plates, or laminae. There are also several haemal arches (arch-like projections from the bottom of the tail vertebrae) which expand into plate-like structures, similar to those of Proterosuchus. [5]
Various ribs have been preserved in the specimen, with some being incorrectly interpreted as other bones. The most complete rib gradually curves inwards, but it is unknown whether any of the ribs are holocephalous (connecting to the vertebrae with one joint) or dichocephalous (with two joints). Gastralia (belly ribs) are present, and correspond to three different forms which broaden towards the back of the body, similar to those of Proterosuchus. [5]
The only preserved portion of the front appendages in the Tasmaniosaurus holotype is the interclavicle, a large and thin bone which runs down the center of shoulder girdle. This bone is characteristic, as the front part ends in a wide, diamond-shaped structure, which smoothly transitions to the main shaft of the bone. This resembles the condition in some archosauromorphs (like Prolacerta) but contrasts with most others (including Proterosuchus), which have a "T-shaped" interclavicle with a boxy front tip that abruptly transitions to the main shaft. Nevertheless, the front tip of this structure possesses a notch which is shallower than that of Prolacerta, more similar to that of Proterosuchus. The main shaft is very long and thin, with the thinnest section right behind the front structure. [5]
The specimen preserves several bones of the back legs, including a poorly preserved bone which has sometimes been identified as either a fibula or a femur. On the one hand, it is seemingly thinner than the preserved tibiae, supporting its identification as a fibula. On the other hand, this quality may be due to crushing, and the fact that it is longer in length than the tibia supports its identification as a femur. The other two leg bones are more easily identifiable as both tibiae. They are more robust than those of Proterosuchus and have wide proximal (near) ends. There is a depression in the middle of the proximal end of each tibia, dividing that end into two low ridges: a cnemial crest and a ventral condyle. This is similar to the state of the tibiae of Prolacerta. [5]
Both back feet are preserved in the specimen, although jumbled and missing some bones. Each metatarsal V (the outermost main foot bone) has a hook-shaped proximal end. However, most of the other bones of the foot are difficult to evaluate. Some stout phalanges (toe bones) can be identified, as well as unguals (claws) which are dull and only slightly curved. [5]
The well-preserved skull roof of Tasmaniosaurus allowed for Ezcurra to reconstruct part of the creature's brain by means of a latex endocast. This endocast showed that the specimen's brain had large olfactory bulbs at the front, which lead into a thin olfactory tract in the middle and a somewhat wider cerebellum in the back. There are also wide and flat extensions at the front of the brain which are separated from the olfactory bulbs by a small groove. These extensions may have been the edge of additional non-brain organs (such as a Jacobson's organ) or alternatively another component of the olfactory bulbs, which would indicate that those parts of the brain were unusually large. Both of these interpretation have significant ramifications on the biology of this animal. [5]
If they are a Jacobson's organ, then the notion that such an organ was not present in archosauromorphs can be proven false. This notion was originally formed due to the fact that neither crocodilians nor birds (the two extant groups of archosauromorphs) possess such an organ. However, Ezcurra notes that both of these groups have specialized modes of life which may have caused the organ to have been lost.
If they are parts of the olfactory bulbs, then Tasmaniosaurus would have had a superb sense of smell. It has been noted that aquatic animals have generally diminished olfactory capabilities compared to their terrestrial counterparts. Thus, this interpretation significantly lowers the likelihood that Tasmaniosaurus or its relatives (such as proterosuchids) were mainly aquatic. Other sources have also supported the idea that proterosuchids were terrestrial rather than aquatic or semiaquatic. [6]
The specimen of Tasmaniosaurus also preserved a bone from another animal: a maxilla complete with teeth. This maxilla was originally interpreted as belonging to a temnospondyl amphibian. It was believed to have been a piece of gut content, the only known example of such preserved in a "proterosuchid". However, Ezcurra noted that several aspects of the specimen's preservation makes this assignment uncertain at best. In addition, he noted that the maxilla had a relatively low number of teeth compared to temnospondyls, and that it also had an ascending process which may have been the front edge of an antorbital fenestra. These factors made it much more likely that the maxilla belonged to a small archosauriform or potentially even a juvenile specimen of Tasmaniosaurus itself. Identification to any particular group is uncertain, but according to Ezcurra it is unlikely that the creature which the bone belonged to was a meal of Tasmaniosaurus. Nevertheless, the curved and serrated teeth of Tasmaniosaurus means that it is practically certain that it was a carnivore of some sort. [5]
Archosauriformes is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian and persist to the present day as the two surviving archosaur groups: crocodilians and birds.
Archosauromorpha is a clade of diapsid reptiles containing all reptiles more closely related to archosaurs rather than lepidosaurs. Archosauromorphs first appeared during the late Middle Permian or Late Permian, though they became much more common and diverse during the Triassic period.
Tanystropheus is an extinct genus of archosauromorph reptile which lived during the Triassic Period in Europe, Asia, and North America. It is recognisable by its extremely elongated neck, longer than the torso and tail combined. The neck was composed of 13 vertebrae strengthened by extensive cervical ribs. Tanystropheus is one of the most well-described non-archosauriform archosauromorphs, known from numerous fossils, including nearly complete skeletons. Some species within the genus may have reached a total length of 6 meters (20 ft), making Tanystropheus the longest non-archosauriform archosauromorph as well. Tanystropheus is the namesake of the family Tanystropheidae, a clade collecting many long-necked Triassic archosauromorphs previously described as "protorosaurs" or "prolacertiforms".
Proterosuchus is an extinct genus of archosauriform reptiles that lived during the Early Triassic. It contains three valid species: the type species P. fergusi and the referred species P. alexanderi and P. goweri. All three species lived in what is now South Africa. The genus was named in 1903 by the South African paleontologist Robert Broom. The genus Chasmatosaurus is a junior synonym of Proterosuchus.
Kalisuchus was a genus of basal archosauriform known from remains unearthed from the Arcadia Formation of the Early Triassic of the Crater, Southwest of Rolleston, south central Queensland, Australia. It was named after Kali, the Hindu goddess of destruction, a reference to the very fragmentary nature of its remains. The type species of Kalisuchus is K. rewanensis, which refers to the Rewan Group. The Arcadia formation is dated to the Induan age at the very beginning of the Triassic, making Kalisuchus one of the oldest archosauromorphs known in Australia.
Turfanosuchus is a genus of archosauriform reptile, likely a gracilisuchid archosaur, which lived during the Middle Triassic (Anisian) of northwestern China. The type species, T. dabanensis, was described by C.C. Young in 1973, based on a partially complete but disarticulated fossil skeleton found in the Kelamayi Formation of the Turfan Basin.
Vancleavea is a genus of extinct, armoured, non-archosaurian archosauriforms from the Late Triassic of western North America. The type and only known species is V. campi, named by Robert Long & Phillip A Murry in 1995. At that time, the genus was only known from fragmentary bones including osteoderms and vertebrae. However, since then many more fossils have been found, including a pair of nearly complete skeletons discovered in 2002. These finds have shown that members of the genus were bizarre semiaquatic reptiles. Vancleavea individuals had short snouts with large, fang-like teeth, and long bodies with small limbs. They were completely covered with bony plates known as osteoderms, which came in several different varieties distributed around the body. Phylogenetic analyses by professional paleontologists have shown that Vancleavea was an archosauriform, part of the lineage of reptiles that would lead to archosaurs such as dinosaurs and crocodilians. Vancleavea lacks certain traits which are present in most other archosauriforms, most notably the antorbital, mandibular and supratemporal fenestrae, which are weight-saving holes in the skulls of other taxa. However, other features clearly support its archosauriform identity, including a lack of intercentra, the presence of osteoderms, an ossified laterosphenoid, and several adaptations of the femur and ankle bones. In 2016, a new genus of archosauriform, Litorosuchus, was described. This genus resembled both Vancleavea and more typical archosauriforms in different respects, allowing Litorosuchus to act as a transitional fossil linking Vancleavea to less aberrant archosauriforms.
Yonghesuchus is an extinct genus of Late Triassic archosaur reptile. Remains have been found from the early Late Triassic Tongchuan Formation in Shanxi, China. It is named after Yonghe County, the county where fossils were found. Currently only one species, Y. sangbiensis, is known. The specific name refers to Sangbi Creek, as fossils were found in one of its banks.
Rhadinosuchus is an extinct genus of proterochampsian archosauriform reptile from the Late Triassic. It is known only from the type species Rhadinosuchus gracilis, reposited in Munich, Germany. The fossil includes an incomplete skull and fragments of post-cranial material. Hosffstetter (1955), Kuhn (1966), Reig (1970) and Bonaparte (1971) hypothesized it to be synonymous with Cerritosaurus, but other characteristics suggest it is closer to Chanaresuchus and Gualosuchus, while it is certainly different from Proterochampsa and Barberenachampsa. The small size indicates it is a young animal, making it hard to classify.
Teraterpeton is an extinct genus of trilophosaurid archosauromorphs. It is known from a partial skeleton from the Late Triassic Wolfville Formation of Nova Scotia, described in 2003. It has many unique features seen in no other related form, including an elongated, toothless snout and large openings for the nostrils. Because of this, Teraterpeton was originally placed in its own family, Teraterpetidae, related to Trilophosaurus. Newer studies generally place it within Trilophosauridae.
Jesairosaurus is an extinct genus of early archosauromorph reptile known from the Illizi Province of Algeria. It is known from a single species, Jesairosaurus lehmani. Although a potential relative of the long-necked tanystropheids, this lightly-built reptile could instead be characterized by its relatively short neck as well as various skull features.
Prolacerta is a genus of archosauromorph from the lower Triassic of South Africa and Antarctica. The only known species is Prolacerta broomi. The generic name Prolacerta is derived from Latin meaning “before lizard” and its species name broomi is in commemoration of the famous paleontologist Robert Broom, who discovered and studied many of the fossils found in rocks of the Karoo Supergroup. When first discovered, Prolacerta was considered to be ancestral to modern lizards, scientifically known as lacertilians. However, a study by Gow (1975) instead found that it shared more similarities with the lineage that would lead to archosaurs such as crocodilians and dinosaurs. Prolacerta is considered by modern paleontologists to be among the closest relatives of the Archosauriformes.
Pamelaria is an extinct genus of allokotosaurian archosauromorph reptile known from a single species, Pamelaria dolichotrachela, from the Middle Triassic of India. Pamelaria has sprawling legs, a long neck, and a pointed skull with nostrils positioned at the very tip of the snout. Among early archosauromorphs, Pamelaria is most similar to Prolacerta from the Early Triassic of South Africa and Antarctica. Both have been placed in the family Prolacertidae. Pamelaria, Prolacerta, and various other Permo-Triassic reptiles such as Protorosaurus and Tanystropheus have often been placed in a group of archosauromorphs called Protorosauria, which was regarded as one of the most basal group of archosauromorphs. However, more recent phylogenetic analyses indicate that Pamelaria and Prolacerta are more closely related to Archosauriformes than are Protorosaurus, Tanystropheus, and other protorosaurs, making Protorosauria a polyphyletic grouping.
Prolacertoides is an extinct genus of archosauromorph reptile from the Early Triassic of China, the type species being Prolacertoides jimusarensis. Prolacertoides means 'like Prolacerta', in reference to Prolacerta, another genus of archosauromorph which Prolacertoides was once believed to have been closely related to. Prolacertoides is known from a single partial skull, IVPP V3233, which was discovered in Xinjiang in northwestern China. The locality of its discovery belongs to the Cangfanggou Group of the Jiucaiyuan Formation, which is dated to the Induan age of the very early Triassic.
Asperoris is an extinct genus of archosauriform reptile known from the Middle Triassic Manda Beds of southwestern Tanzania. It is the first archosauriform known from the Manda Beds that is not an archosaur. However, its relationships with other non-archosaurian archosauriforms are uncertain. It was first named by Sterling J. Nesbitt, Richard J. Butler and David J. Gower in 2013 and the type species is Asperoris mnyama. Asperoris means "rough face" in Latin, referring to the distinctive rough texture of its skull bones.
Teyujagua is an extinct genus of small, probably semi-aquatic archosauromorph reptile that lived in Brazil during the Early Triassic period. The genus contains the type and only known species, T. paradoxa. It is known from a well-preserved skull, and probably resembled a crocodile in appearance. It was an intermediary between the primitive archosauromorphs and the more advanced Archosauriformes, revealing the mosaic evolution of how the key features of the archosauriform skull were acquired. Teyujagua also provides additional support for a two-phase model of archosauriform radiation, with an initial diversification in the Permian followed by a second adaptive radiation in the Early Triassic.
Aphanosauria is an extinct group of reptiles distantly related to dinosaurs. They are at the base of a group known as Avemetatarsalia, one of two main branches of archosaurs. The other main branch, Pseudosuchia, includes modern crocodilians. Aphanosaurs possessed features from both groups, indicating that they are the oldest and most primitive known clade of avemetatarsalians, at least in terms of their position on the archosaur family tree. Other avemetatarsalians include the flying pterosaurs, small bipedal lagerpetids, herbivorous silesaurids, and the incredibly diverse dinosaurs, which survive to the present day in the form of birds. Aphanosauria is formally defined as the most inclusive clade containing Teleocrater rhadinus and Yarasuchus deccanensis but not Passer domesticus or Crocodylus niloticus. This group was first recognized during the description of Teleocrater. Although only known by a few genera, Aphanosaurs had a widespread distribution across Pangaea in the Middle Triassic. They were fairly slow quadrupedal long-necked carnivores, a biology more similar to basal archosaurs than to advanced avemetatarsalians such as pterosaurs, lagerpetids, and early dinosaurs. In addition, they seemingly possess 'crocodile-normal' ankles, showing that 'advanced mesotarsal' ankles were not basal to the whole clade of Avemetatarsalia. Nevertheless, they possessed elevated growth rates compared to their contemporaries, indicating that they grew quickly, more like birds than other modern reptiles. Despite superficially resembling lizards, the closest modern relatives of aphanosaurs are birds.
Kadimakara is an extinct genus of early archosauromorph reptile from the Arcadia Formation of Queensland, Australia. It was seemingly a very close relative of Prolacerta, a carnivorous reptile which possessed a moderately long neck. The generic name Kadimakara references prehistoric creatures from Aboriginal myths which may have been inspired by ice-age megafauna. The specific name K. australiensis relates to the fact that it was found in Australia. Prolacerta and Kadimakara were closely related to the Archosauriformes, a successful group which includes archosaurs such as crocodilians, pterosaurs, and dinosaurs.
Boreopricea is an extinct genus of archosauromorph reptile from the Early Triassic of arctic Russia. It is known from a fairly complete skeleton discovered in a borehole on Kolguyev Island, though damage to the specimen and loss of certain bones has complicated study of the genus. Boreopricea shared many similarities with various other archosauromorphs, making its classification controversial. Various studies have considered it a close relative of Prolacerta, tanystropheids, both, or neither. Boreopricea is unique among early archosauromorphs due to possessing contact between the jugal and squamosal bones at the rear half of the skull.
Polymorphodon is an extinct genus of archosauriform reptile from the Middle Triassic of Germany. The only known species is Polymorphodon adorfi, discovered in Lower Keuper deposits at a quarry in Eschenau, Germany. Polymorphodon is notable for its heterodont dentition, with long and conical premaxillary teeth followed by thin maxillary teeth with large serrations. Maxillary teeth near the back of the mouth are short and leaf-shaped, similar to some living and extinct reptiles with a herbivorous or omnivorous diet. This may suggest that Polymorphodon had some reliance on plants in its diet, a rarity among basal archosauriforms, most of which are carnivores.