Protamine 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | PRM1 | ||||||
NCBI gene | 5619 | ||||||
HGNC | 9447 | ||||||
OMIM | 182880 | ||||||
RefSeq | NM_002761 | ||||||
UniProt | P04553 | ||||||
Other data | |||||||
Locus | Chr. 16 p13.13 | ||||||
|
Protamine 2 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Symbol | PRM2 | ||||||
NCBI gene | 5620 | ||||||
HGNC | 9448 | ||||||
OMIM | 182890 | ||||||
RefSeq | NM_002762 | ||||||
UniProt | P04554 | ||||||
Other data | |||||||
Locus | Chr. 16 p13.13 | ||||||
|
Protamines are small, arginine-rich, nuclear proteins that replace histones late in the haploid phase of spermatogenesis and are believed essential for sperm head condensation and DNA stabilization. They may allow for denser packaging of DNA in the spermatozoon than histones, but they must be decompressed before the genetic data can be used for protein synthesis. However, part of the sperm's genome is packaged by histones (10-15% in humans and other primates) thought to bind genes that are essential for early embryonic development. [1]
Protamine and protamine-like (PL) proteins are collectively known as the sperm-specific nuclear basic proteins (SNBPs). The PL proteins are intermediate in structure between protamine and Histone H1. The C-terminal domain of PL could be the precursor of vertebrate protamine. [2]
During the formation of sperm, protamine binds to the phosphate backbone of DNA using the arginine-rich domain as an anchor. DNA is then folded into a toroid, an O-shaped structure, although the mechanism is not known. A sperm cell can contain up to 50,000 toroid-shaped structures in its nucleus with each toroid containing about 50 kilobases. [4] Before the toroid is formed, histones are removed from the DNA by transition nuclear proteins, so that protamine can condense it. The effects of this change are 1) an increase in sperm hydrodynamics for better flow through liquids by reducing the head size 2) decrease in the occurrence of DNA damage 3) removal of the epigenetic markers that occur with histone modifications. [5]
The structure of the sperm head is also related to protamine levels. The ratio of protamine 2 to protamine 1 and transition nuclear proteins has been found to change the sperm head shape in various species of mice, by altering the expression of protamine 2 via mutations in its promoter region. A decrease in the ratio has been found to increase the competitive ability of sperm in Mus species. However, further testing is required to determine how this ratio influences the shape of the head and whether monogamy influences this selection. In humans, studies show that men who have unbalanced Prm1/Prm2 are subfertile or infertile. [6] Protamine 2 is encoded as a longer protein that needs its N-terminal cleaved before becoming functional. Human and chimp protamine has undergone rapid evolution. [7]
When mixed with insulin, protamines slow down the onset and increase the duration of insulin action (see NPH insulin). [8]
Protamine is used in cardiac surgery, vascular surgery, and interventional radiology procedures to neutralize the anti-clotting effects of heparin. Adverse effects include increased pulmonary artery pressure and decrease peripheral blood pressure, myocardial oxygen consumption, cardiac output, and heart rate. [9]
Protamine sulfate is an antidote for heparin overdose, but severe allergy may occur. [10] A chain shortened version of protamine also acts as a potent heparin antagonist, but with markedly reduced antigenicity. It was initially produced as a mixture made by thermolysin digestion of protamine, [11] but the actual effective peptide portion VSRRRRRRGGRRRR
has since been isolated. [12] An analogue of this peptide has also been produced. [13]
In gene therapy, protamine sulfate's ability to condense plasmid DNA along with its approval by the U.S. Food and Drug Administration (FDA) have made it an appealing candidate to increase transduction rates by both viral [14] and nonviral (e.g. utilizing cationic liposomes) [15] mediated delivery mechanisms.
Protamine may be used as a drug to prevent obesity. Protamine has been shown to deter increases in body weight and low-density lipoprotein in high-fat diet rats. This effect occurs through the inhibition of lipase activity, an enzyme responsible for triacylglycerol digestion and absorption, resulting in a decrease in the absorption of dietary fat. No liver damage was found when the rats were treated with protamine. However, emulsification of long-chain fatty acids for digestion and absorption in the small intestine is less constant in humans than rats, which will vary the effectiveness of protamine as a drug. Furthermore, human peptidases may degrade protamine at different rates, thus further tests are required to determine protamine's ability to prevent obesity in humans. [16]
Mice, humans [1] and certain fish have two or more different protamines, whereas the sperm of bull and boar, [17] have one form of protamine due to a mutation in the PRM2 gene. In the rat, although the gene for PRM2 is present, expression of this protein is extremely small because of limited transcription due to an inefficient promoter in addition to altered processing of the mRNA transcript. [18]
The 2 human protamines are denoted PRM1 and PRM2. In mice and humans, PRM1, PRM2, and TNP2 are co-located in a conserved gene cluster. [19]
Eutherian mammals generally have both PRM1 and PRM2. Metatherians on the other hand only have a homolog to P1. [20]
Examples of protamines from fish are:
Fish protamine are generally shorter than that of mammals, with a higher amount of arginine. [20]
Protamine P1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Protamine_P1 | ||||||||
Pfam | PF00260 | ||||||||
InterPro | IPR000221 | ||||||||
PROSITE | PDOC00047 | ||||||||
|
Protamine P2 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Protamine_P2 | ||||||||
Pfam | PF00841 | ||||||||
InterPro | IPR000492 | ||||||||
|
The primary structure of protamine P1, the protamine used for packaging DNA in sperm cells, in placental mammals is usually 49 or 50 amino acids long. This sequence is divided into three separate domains: an arginine-rich domain for DNA binding flanked by shorter peptide sequences containing mostly cysteine residues. The arginine-rich domain consists of 3-11 arginine residues and is conserved between fish protamine and mammalian protamine 1 sequences at about 60-80% sequence identity. [1]
After translation, the protamine P1 structure is immediately phosphorylated at all three of the above-mentioned domains. Another round of phosphorylation occurs when the sperm enters the egg, but the function of these phosphorylations is uncertain. [1]
The exact secondary and tertiary structure of protamine is not known with certainty, but several proposals have been published since the 1970s. [22] [23] [1] [24] [25] [20] [26] The broad consensus is that protamine forms beta strand structures that then crosslink through disulfide bonds (and potentially dityrosine and cysteine-tyrosine bonds). [25] [20] When protamine P1 binds to DNA, cysteine from the amino terminal of one protamine P1 forms disulfide bonds with the cysteine from the carboxy-terminal of another protamine P1. By neutralizing the backbone charge protamine enables the DNA to more tightly coil. [3] [26] The disulfide bonds function to prevent the dissociation of protamine P1 from DNA until the bonds are reduced when the sperm enters the egg. [1] These long protamine polymers may then wrap around the DNA within the major groove. [1] [23]
Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division, preventing DNA damage, and regulating gene expression and DNA replication. During mitosis and meiosis, chromatin facilitates proper segregation of the chromosomes in anaphase; the characteristic shapes of chromosomes visible during this stage are the result of DNA being coiled into highly condensed chromatin.
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 9 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.
Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the laboratory. Protein primary structures can be directly sequenced, or inferred from DNA sequences.
Protein biosynthesis is a core biological process, occurring inside cells, balancing the loss of cellular proteins through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.
In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.
Proinsulin is the prohormone precursor to insulin made in the beta cells of the Pancreatic Islets, specialized regions of the pancreas. In humans, proinsulin is encoded by the INS gene. The pancreatic islets only secrete between 1% and 3% of proinsulin intact. However, because proinsulin has a longer half life than insulin, it can account for anywhere from 5–30% of the insulin-like structures circulating in the blood. There are higher concentrations of proinsulin after meals and lower levels when a person is fasting. Additionally, while proinsulin and insulin have structural differences, proinsulin does demonstrate some affinity for the insulin receptor. Due to the relative similarities in structure, proinsulin can produce between 5% and 10% of the metabolic activity similarly induced by insulin.
Histone methyltransferases (HMT) are histone-modifying enzymes, that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific and arginine-specific. In both types of histone methyltransferases, S-Adenosyl methionine (SAM) serves as a cofactor and methyl donor group.
The genomic DNA of eukaryotes associates with histones to form chromatin. The level of chromatin compaction depends heavily on histone methylation and other post-translational modifications of histones. Histone methylation is a principal epigenetic modification of chromatin that determines gene expression, genomic stability, stem cell maturation, cell lineage development, genetic imprinting, DNA methylation, and cell mitosis.
In molecular biology, a histone octamer is the eight-protein complex found at the center of a nucleosome core particle. It consists of two copies of each of the four core histone proteins. The octamer assembles when a tetramer, containing two copies of H3 and two of H4, complexes with two H2A/H2B dimers. Each histone has both an N-terminal tail and a C-terminal histone-fold. Each of these key components interacts with DNA in its own way through a series of weak interactions, including hydrogen bonds and salt bridges. These interactions keep the DNA and the histone octamer loosely associated, and ultimately allow the two to re-position or to separate entirely.
Protamine sulfate is a medication that is used to reverse the effects of heparin. It is specifically used in heparin overdose, in low molecular weight heparin overdose, and to reverse the effects of heparin during delivery and heart surgery. It is given by injection into a vein. The onset of effects is typically within five minutes.
Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H4 is involved with the structure of the nucleosome of the 'beads on a string' organization. Histone proteins are highly post-translationally modified. Covalently bonded modifications include acetylation and methylation of the N-terminal tails. These modifications may alter expression of genes located on DNA associated with its parent histone octamer. Histone H4 is an important protein in the structure and function of chromatin, where its sequence variants and variable modification states are thought to play a role in the dynamic and long term regulation of genes.
ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.
Nucleophosmin (NPM), also known as nucleolar phosphoprotein B23 or numatrin, is a protein that in humans is encoded by the NPM1 gene.
Insulin-like growth factor-binding protein 7 is a protein that in humans is encoded by the IGFBP7 gene. The major function of the protein is the regulation of availability of insulin-like growth factors (IGFs) in tissue as well as in modulating IGF binding to its receptors. IGFBP7 binds to IGF with low affinity compared to IGFBPs 1-6. It also stimulates cell adhesion. The protein is implicated in some cancers.
Nuclear autoantigenic sperm protein is a protein that in humans is encoded by the NASP gene. Multiple isoforms are encoded by transcript variants of this gene.
LUC7 like 3 pre-mRNA splicing factor (LUC7L3), also known as Cisplatin resistance-associated overexpressed protein, or CROP, is a human gene.
Spermatid nuclear transition protein 1 is a protein that in humans is encoded by the TNP1 gene.
Nuclear transition protein 2 is a protein that in humans is encoded by the TNP2 gene.
The AT-hook is a DNA-binding motif present in many proteins, including the high mobility group (HMG) proteins, DNA-binding proteins from plants and hBRG1 protein, a central ATPase of the human switching/sucrose non-fermenting (SWI/SNF) remodeling complex.
Protein O-GlcNAc transferase also known as OGT or O-linked N-acetylglucosaminyltransferase is an enzyme that in humans is encoded by the OGT gene. OGT catalyzes the addition of the O-GlcNAc post-translational modification to proteins.
Protamine 2 is a protein that in humans is encoded by the PRM2 gene.