Dityrosine

Last updated
Dityrosine
L,L-Dityrosine.png
Names
IUPAC name
(2S,2′S)-3,3'-(6,6′-dihydroxybiphenyl-3,3′-diyl)bis(2-aminopropanoic acid)
Systematic IUPAC name
(2S)-2-amino-3-[3-[5-[(2S)-2-amino-2-carboxyethyl]-2-hydroxyphenyl]-4-hydroxyphenyl]propanoic acid
Other names
    • L,L-Dityrosine
    • 3,3′-Di-L-tyrosine
    • 3,3′-Bityrosine
Identifiers
3D model (JSmol)
2228674 [1]
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C18H20N2O6/c19-13(17(23)24)7-9-1-3-15(21)11(5-9)12-6-10(2-4-16(12)22)8-14(20)18(25)26/h1-6,13-14,21-22H,7-8,19-20H2,(H,23,24)(H,25,26)/t13-,14-/m0/s1
    Key: OQALFHMKVSJFRR-KBPBESRZSA-N
  • C1=CC(=C(C=C1C[C@@H](C(=O)O)N)C2=C(C=CC(=C2)C[C@@H](C(=O)O)N)O)O
Properties
C18H20N2O6
Molar mass 360.366 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dityrosine is a dimeric form of tyrosine. Whereas tyrosine itself is a proteinogenic amino acid, dityrosine is non-proteinogenic. Various enzymes, such as CYP56A1 and myeloperoxidase, catalyze the oxidation of tyrosine residues in protein chains to form dityrosine crosslinks in various organisms. It was first isolated from rubber protein of locust wing ligament.[ citation needed ] Its formation can also be induced by various radical-forming agents.


The 2,2′-biphenol structural motif allows dityrosine to form a complex with borate. [3] Affinity chromatography with a column containing immobilised phenylboronic acid has allowed development of several methods for purification of dityrosine. [4]

The tyrosine–tyrosine crosslink can form by ultraviolet irradiation and other conditions that induce radical formation. [4] Proteins with calcium binding sites consisting of two tyrosine residues, such as calmodulin and troponin C, are especially prone to this reaction as a result of coodination of their phenol groups to a calcium ion. The monomer and dimer have different emission wavelengths, which can complicate fluorescence spectroscopic analysis of tyrosine-containing proteins. [5] Conversely, the specific fluorescence of dityrosine allows simple detection of it. In particular, resilin can easily be visualized in whole organisms. [6]

The presence of dityrosine is a general biomarker for oxidative stress. [7]

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of all life.

<span class="mw-page-title-main">Protein primary structure</span> Linear sequence of amino acids in a peptide or protein

Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the laboratory. Protein primary structures can be directly sequenced, or inferred from DNA sequencess.

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, only L-cysteine is found in nature.

<span class="mw-page-title-main">Threonine</span> Amino acid

Threonine is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain containing a hydroxyl group, making it a polar, uncharged amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Threonine is synthesized from aspartate in bacteria such as E. coli. It is encoded by all the codons starting AC.

<span class="mw-page-title-main">Post-translational modification</span> Biological processes

Post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes translating mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

<span class="mw-page-title-main">Metalloprotein</span> Protein that contains a metal ion cofactor

Metalloprotein is a generic term for a protein that contains a metal ion cofactor. A large proportion of all proteins are part of this category. For instance, at least 1000 human proteins contain zinc-binding protein domains although there may be up to 3000 human zinc metalloproteins.

A polyphosphate is a salt or ester of polymeric oxyanions formed from tetrahedral PO4 (phosphate) structural units linked together by sharing oxygen atoms. Polyphosphates can adopt linear or a cyclic ring structures. In biology, the polyphosphate esters ADP and ATP are involved in energy storage. A variety of polyphosphates find application in mineral sequestration in municipal waters, generally being present at 1 to 5 ppm. GTP, CTP, and UTP are also nucleotides important in the protein synthesis, lipid synthesis, and carbohydrate metabolism, respectively. Polyphosphates are also used as food additives, marked E452.

In chemistry, hydroxylation can refer to:

<span class="mw-page-title-main">Proteinogenic amino acid</span> Amino acid that is incorporated biosynthetically into proteins during translation

Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard genetic code and an additional 2 that can be incorporated by special translation mechanisms.

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts with, binds with, or recognizes the analyte under study. The biologically sensitive elements can also be created by biological engineering. The transducer or the detector element, which transforms one signal into another one, works in a physicochemical way: optical, piezoelectric, electrochemical, electrochemiluminescence etc., resulting from the interaction of the analyte with the biological element, to easily measure and quantify. The biosensor reader device connects with the associated electronics or signal processors that are primarily responsible for the display of the results in a user-friendly way. This sometimes accounts for the most expensive part of the sensor device, however it is possible to generate a user friendly display that includes transducer and sensitive element. The readers are usually custom-designed and manufactured to suit the different working principles of biosensors.

<span class="mw-page-title-main">Nitric oxide synthase</span> Enzyme catalysing the formation of the gasotransmitter NO(nitric oxide)

Nitric oxide synthases (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS and nNOS. The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.

CAMK, also written as CaMK or CCaMK, is an abbreviation for the Ca2+/calmodulin-dependent protein kinase class of enzymes. CAMKs are activated by increases in the concentration of intracellular calcium ions (Ca2+) and calmodulin. When activated, the enzymes transfer phosphates from ATP to defined serine or threonine residues in other proteins, so they are serine/threonine-specific protein kinases. Activated CAMK is involved in the phosphorylation of transcription factors and therefore, in the regulation of expression of responding genes. CAMK also works to regulate the cell life cycle (i.e. programmed cell death), rearrangement of the cell's cytoskeletal network, and mechanisms involved in the learning and memory of an organism.

<span class="mw-page-title-main">Aequorin</span> Calcium-activated photoprotein

Aequorin is a calcium-activated photoprotein isolated from the hydrozoan Aequorea victoria. Its bioluminescence was studied decades before the protein was isolated from the animal by Osamu Shimomura in 1962. In the animal, the protein occurs together with the green fluorescent protein to produce green light by resonant energy transfer, while aequorin by itself generates blue light.

<span class="mw-page-title-main">Resilin</span> Insect protein

Resilin is an elastomeric protein found in many insects and other arthropods. It provides soft rubber-elasticity to mechanically active organs and tissue; for example, it enables insects of many species to jump or pivot their wings efficiently. Resilin was first discovered by Torkel Weis-Fogh in locust wing-hinges.

<span class="mw-page-title-main">EGTA (chemical)</span> Chemical compound

EGTA, also known as egtazic acid, is an aminopolycarboxylic acid, a chelating agent. It is a white solid that is related to the better known EDTA. Compared to EDTA, it has a lower affinity for magnesium, making it more selective for calcium ions. It is useful in buffer solutions that resemble the environment in living cells where calcium ions are usually at least a thousandfold less concentrated than magnesium.

<span class="mw-page-title-main">Antamanide</span> Chemical compound

Antamanide is a cyclic decapeptide isolated from a fungus, the death cap: Amanita phalloides. It is being studied as a potential anti-toxin against the effects of phalloidin and for its potential for treating edema. It contains 1 valine residue, 4 proline residues, 1 alanine residue, and 4 phenylalanine residues with a structure of c(Val-Pro-Pro-Ala-Phe-Phe-Pro-Pro-Phe-Phe). It was isolated by determining the source of the anti-phalloidin activity from a lipophillic extraction from the organism. It has been shown that antamanide can react to form alkali metal ion complexes. These include complexes with sodium and calcium ions. When these complexes are formed, the cyclopeptide structure undergoes a conformational change.

<span class="mw-page-title-main">Calmodulin 1</span> Protein-coding gene in the species Homo sapiens

Calmodulin 1 is a protein that in humans is encoded by the CALM1 gene.

<span class="mw-page-title-main">Synapsin I</span> Protein-coding gene in the species Homo sapiens

Synapsin I, is the collective name for Synapsin Ia and Synapsin Ib, two nearly identical phosphoproteins that in humans are encoded by the SYN1 gene. In its phosphorylated form, Synapsin I may also be referred to as phosphosynaspin I. Synapsin I is the first of the proteins in the synapsin family of phosphoproteins in the synaptic vesicles present in the central and peripheral nervous systems. Synapsin Ia and Ib are close in length and almost the same in make up, however, Synapsin Ib stops short of the last segment of the C-terminal in the amino acid sequence found in Synapsin Ia.

<span class="mw-page-title-main">Non-proteinogenic amino acids</span> Are not naturally encoded in the genome

In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important:

<span class="mw-page-title-main">Gap junction modulation</span>

Gap junction modulation describes the functional manipulation of gap junctions, specialized channels that allow direct electrical and chemical communication between cells without exporting material from the cytoplasm. Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability. Impaired or altered modulation can have significant health implications and are associated with the pathogenesis of the liver, heart and intestines.

References

  1. Chirality unspecified
  2. Chirality unspecified
  3. Malencik, D. A.; Anderson, S. R. (1991). "Fluorometric characterization of dityrosine: Complex formation with boric acid and borate ion". Biochem. Biophys. Res. Commun. 178 (1): 60–67. doi:10.1016/0006-291x(91)91779-c. PMID   2069580.
  4. 1 2 Malencik, Dean A.; Sprouse, James F.; Swanson, Chris A.; Anderson, Sonia R. (1996). "Dityrosine: preparation, isolation, and analysis". Anal Biochem. 242 (2): 202–213. doi:10.1006/abio.1996.0454.
  5. Malencik, Dean A.; Anderson, Sonia R. (1987). "Dityrosine formation in calmodulin". Biochemistry. 26 (3): 695–704. doi:10.1021/bi00377a006.
  6. Elvin, Christopher M.; Carr, Andrew G.; Huson, Mickey G. G; Maxwell, JM; Pearson, Roger D.; Vuocolo, Tony; Liyou, Nancy E.; Wong, Darren C. C.; Merritt, David J.; Dixon, Nicholas E. (October 2005). "Synthesis and properties of crosslinked recombinant pro-resilin". Nature. 437 (7061): 999–1002. Bibcode:2005Natur.437..999E. doi:10.1038/nature04085. PMID   16222249. S2CID   4411986.
  7. DiMarco, Theresa; Giulivi, Cecilia (2007). "Current analytical methods for the detection of dityrosine, a biomarker of oxidative stress, in biological samples". Mass Spectrometry Reviews. 26 (1): 108–120. doi:10.1002/mas.20109.