Proteinogenic amino acids are amino acids that are incorporated biosynthetically into proteins during translation. The word "proteinogenic" means "protein creating". Throughout known life, there are 22 genetically encoded (proteinogenic) amino acids, 20 in the standard genetic code and an additional 2 (selenocysteine and pyrrolysine) that can be incorporated by special translation mechanisms. [1]
In contrast, non-proteinogenic amino acids are amino acids that are either not incorporated into proteins (like GABA, L-DOPA, or triiodothyronine), misincorporated in place of a genetically encoded amino acid, or not produced directly and in isolation by standard cellular machinery (like hydroxyproline). The latter often results from post-translational modification of proteins. Some non-proteinogenic amino acids are incorporated into nonribosomal peptides which are synthesized by non-ribosomal peptide synthetases.
Both eukaryotes and prokaryotes can incorporate selenocysteine into their proteins via a nucleotide sequence known as a SECIS element, which directs the cell to translate a nearby UGA codon as selenocysteine (UGA is normally a stop codon). In some methanogenic prokaryotes, the UAG codon (normally a stop codon) can also be translated to pyrrolysine. [2]
In eukaryotes, there are only 21 proteinogenic amino acids, the 20 of the standard genetic code, plus selenocysteine. Humans can synthesize 12 of these from each other or from other molecules of intermediary metabolism. The other nine must be consumed (usually as their protein derivatives), and so they are called essential amino acids. The essential amino acids are histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine (i.e. H, I, L, K, M, F, T, W, V). [3]
The proteinogenic amino acids have been found to be related to the set of amino acids that can be recognized by ribozyme autoaminoacylation systems. [4] Thus, non-proteinogenic amino acids would have been excluded by the contingent evolutionary success of nucleotide-based life forms. Other reasons have been offered to explain why certain specific non-proteinogenic amino acids are not generally incorporated into proteins; for example, ornithine and homoserine cyclize against the peptide backbone and fragment the protein with relatively short half-lives, while others are toxic because they can be mistakenly incorporated into proteins, such as the arginine analog canavanine.
The evolutionary selection of certain proteinogenic amino acids from the primordial soup has been suggested to be because of their better incorporation into a polypeptide chain as opposed to non-proteinogenic amino acids. [5]
The following illustrates the structures and abbreviations of the 21 amino acids that are directly encoded for protein synthesis by the genetic code of eukaryotes. The structures given below are standard chemical structures, not the typical zwitterion forms that exist in aqueous solutions.
IUPAC/IUBMB now also recommends standard abbreviations for the following two amino acids:
Following is a table listing the one-letter symbols, the three-letter symbols, and the chemical properties of the side chains of the standard amino acids. The masses listed are based on weighted averages of the elemental isotopes at their natural abundances. Forming a peptide bond results in elimination of a molecule of water. Therefore, the protein's mass is equal to the mass of amino acids the protein is composed of minus 18.01524 Da per peptide bond.
Amino acid | Short | Abbrev. | Avg. mass (Da) | pI | pK 1 (α-COO-) | pK2 (α-NH3+) |
---|---|---|---|---|---|---|
Alanine | A | Ala | 89.09404 | 6.01 | 2.35 | 9.87 |
Cysteine | C | Cys | 121.15404 | 5.05 | 1.92 | 10.70 |
Aspartic acid | D | Asp | 133.10384 | 2.85 | 1.99 | 9.90 |
Glutamic acid | E | Glu | 147.13074 | 3.15 | 2.10 | 9.47 |
Phenylalanine | F | Phe | 165.19184 | 5.49 | 2.20 | 9.31 |
Glycine | G | Gly | 75.06714 | 6.06 | 2.35 | 9.78 |
Histidine | H | His | 155.15634 | 7.60 | 1.80 | 9.33 |
Isoleucine | I | Ile | 131.17464 | 6.05 | 2.32 | 9.76 |
Lysine | K | Lys | 146.18934 | 9.60 | 2.16 | 9.06 |
Leucine | L | Leu | 131.17464 | 6.01 | 2.33 | 9.74 |
Methionine | M | Met | 149.20784 | 5.74 | 2.13 | 9.28 |
Asparagine | N | Asn | 132.11904 | 5.41 | 2.14 | 8.72 |
Pyrrolysine | O | Pyl | 255.31 | ? | ? | ? |
Proline | P | Pro | 115.13194 | 6.30 | 1.95 | 10.64 |
Glutamine | Q | Gln | 146.14594 | 5.65 | 2.17 | 9.13 |
Arginine | R | Arg | 174.20274 | 10.76 | 1.82 | 8.99 |
Serine | S | Ser | 105.09344 | 5.68 | 2.19 | 9.21 |
Threonine | T | Thr | 119.12034 | 5.60 | 2.09 | 9.10 |
Selenocysteine | U | Sec | 168.053 | 5.47 | 1.91 | 10 |
Valine | V | Val | 117.14784 | 6.00 | 2.39 | 9.74 |
Tryptophan | W | Trp | 204.22844 | 5.89 | 2.46 | 9.41 |
Tyrosine | Y | Tyr | 181.19124 | 5.64 | 2.20 | 9.21 |
Amino acid | Short | Abbrev. | Side chain | Hydro- phobic | pKa § | Polar | pH | Small | Tiny | Aromatic or Aliphatic | van der Waals volume (Å3) |
---|---|---|---|---|---|---|---|---|---|---|---|
Alanine | A | Ala | -CH3 | - | - | Aliphatic | 67 | ||||
Cysteine | C | Cys | -CH2 SH | 8.55 | acidic | - | 86 | ||||
Aspartic acid | D | Asp | -CH2COOH | 3.67 | acidic | - | 91 | ||||
Glutamic acid | E | Glu | -CH2CH2COOH | 4.25 | acidic | - | 109 | ||||
Phenylalanine | F | Phe | -CH2C6H5 | - | - | Aromatic | 135 | ||||
Glycine | G | Gly | -H | - | - | - | 48 | ||||
Histidine | H | His | -CH2-C3H3N2 | 6.54 | weak basic | Aromatic | 118 | ||||
Isoleucine | I | Ile | -CH(CH3)CH2CH3 | - | - | Aliphatic | 124 | ||||
Lysine | K | Lys | -(CH2)4NH2 | 10.40 | basic | - | 135 | ||||
Leucine | L | Leu | -CH2CH(CH3)2 | - | - | Aliphatic | 124 | ||||
Methionine | M | Met | -CH2CH2 SCH3 | - | - | Aliphatic | 124 | ||||
Asparagine | N | Asn | -CH2CONH2 | - | - | - | 96 | ||||
Pyrrolysine | O | Pyl | -(CH2)4NHCOC4H5NCH3 | N.D. | weak basic | - | ? | ||||
Proline | P | Pro | -CH2CH2CH2- | - | - | - | 90 | ||||
Glutamine | Q | Gln | -CH2CH2CONH2 | - | - | - | 114 | ||||
Arginine | R | Arg | -(CH2)3NH-C(NH)NH2 | 12.3 | strongly basic | - | 148 | ||||
Serine | S | Ser | -CH2OH | - | - | - | 73 | ||||
Threonine | T | Thr | -CH(OH)CH3 | - | - | - | 93 | ||||
Selenocysteine | U | Sec | -CH2 SeH | 5.43 | acidic | - | ? | ||||
Valine | V | Val | -CH(CH3)2 | - | - | Aliphatic | 105 | ||||
Tryptophan | W | Trp | -CH2 C8H6N | - | - | Aromatic | 163 | ||||
Tyrosine | Y | Tyr | -CH2-C6H4OH | 9.84 | weak acidic | Aromatic | 141 |
§: Values for Asp, Cys, Glu, His, Lys & Tyr were determined using the amino acid residue placed centrally in an alanine pentapeptide. [6] The value for Arg is from Pace et al. (2009). [7] The value for Sec is from Byun & Kang (2011). [8]
N.D.: The pKa value of Pyrrolysine has not been reported.
Note: The pKa value of an amino-acid residue in a small peptide is typically slightly different when it is inside a protein. Protein pKa calculations are sometimes used to calculate the change in the pKa value of an amino-acid residue in this situation.
Amino acid | Short | Abbrev. | Codon(s) | Occurrence | Essential‡ in humans | |||
---|---|---|---|---|---|---|---|---|
in Archaean proteins (%)& | in Bacteria proteins (%)& | in Eukaryote proteins (%)& | in human proteins (%)& | |||||
Alanine | A | Ala | GCU, GCC, GCA, GCG | 8.2 | 10.06 | 7.63 | 7.01 | No |
Cysteine | C | Cys | UGU, UGC | 0.98 | 0.94 | 1.76 | 2.3 | Conditionally |
Aspartic acid | D | Asp | GAU, GAC | 6.21 | 5.59 | 5.4 | 4.73 | No |
Glutamic acid | E | Glu | GAA, GAG | 7.69 | 6.15 | 6.42 | 7.09 | Conditionally |
Phenylalanine | F | Phe | UUU, UUC | 3.86 | 3.89 | 3.87 | 3.65 | Yes |
Glycine | G | Gly | GGU, GGC, GGA, GGG | 7.58 | 7.76 | 6.33 | 6.58 | Conditionally |
Histidine | H | His | CAU, CAC | 1.77 | 2.06 | 2.44 | 2.63 | Yes |
Isoleucine | I | Ile | AUU, AUC, AUA | 7.03 | 5.89 | 5.1 | 4.33 | Yes |
Lysine | K | Lys | AAA, AAG | 5.27 | 4.68 | 5.64 | 5.72 | Yes |
Leucine | L | Leu | UUA, UUG, CUU, CUC, CUA, CUG | 9.31 | 10.09 | 9.29 | 9.97 | Yes |
Methionine | M | Met | AUG | 2.35 | 2.38 | 2.25 | 2.13 | Yes |
Asparagine | N | Asn | AAU, AAC | 3.68 | 3.58 | 4.28 | 3.58 | No |
Pyrrolysine | O | Pyl | UAG* | 0 | 0 | 0 | 0 | No |
Proline | P | Pro | CCU, CCC, CCA, CCG | 4.26 | 4.61 | 5.41 | 6.31 | No |
Glutamine | Q | Gln | CAA, CAG | 2.38 | 3.58 | 4.21 | 4.77 | No |
Arginine | R | Arg | CGU, CGC, CGA, CGG, AGA, AGG | 5.51 | 5.88 | 5.71 | 5.64 | Conditionally |
Serine | S | Ser | UCU, UCC, UCA, UCG, AGU, AGC | 6.17 | 5.85 | 8.34 | 8.33 | No |
Threonine | T | Thr | ACU, ACC, ACA, ACG | 5.44 | 5.52 | 5.56 | 5.36 | Yes |
Selenocysteine | U | Sec | UGA** | 0 | 0 | 0 | >0 | No |
Valine | V | Val | GUU, GUC, GUA, GUG | 7.8 | 7.27 | 6.2 | 5.96 | Yes |
Tryptophan | W | Trp | UGG | 1.03 | 1.27 | 1.24 | 1.22 | Yes |
Tyrosine | Y | Tyr | UAU, UAC | 3.35 | 2.94 | 2.87 | 2.66 | Conditionally |
Stop codon† | - | Term | UAA, UAG, UGA†† | ? | ? | ? | — | — |
* UAG is normally the amber stop codon, but in organisms containing the biological machinery encoded by the pylTSBCD cluster of genes the amino acid pyrrolysine will be incorporated. [9]
** UGA is normally the opal (or umber) stop codon, but encodes selenocysteine if a SECIS element is present.
† The stop codon is not an amino acid, but is included for completeness.
†† UAG and UGA do not always act as stop codons (see above).
‡ An essential amino acid cannot be synthesized in humans and must, therefore, be supplied in the diet. Conditionally essential amino acids are not normally required in the diet, but must be supplied exogenously to specific populations that do not synthesize it in adequate amounts.
& Occurrence of amino acids is based on 135 Archaea, 3775 Bacteria, 614 Eukaryota proteomes and human proteome (21 006 proteins) respectively. [10]
In mass spectrometry of peptides and proteins, knowledge of the masses of the residues is useful. The mass of the peptide or protein is the sum of the residue masses plus the mass of water (Monoisotopic mass = 18.01056 Da; average mass = 18.0153 Da). The residue masses are calculated from the tabulated chemical formulas and atomic weights. [11] In mass spectrometry, ions may also include one or more protons (Monoisotopic mass = 1.00728 Da; average mass* = 1.0074 Da). *Protons cannot have an average mass, this confusingly infers to Deuterons as a valid isotope, but they should be a different species (see Hydron (chemistry))
Amino acid | Short | Abbrev. | Formula | Mon. mass§ ( Da ) | Avg. mass ( Da ) |
---|---|---|---|---|---|
Alanine | A | Ala | C3H5NO | 71.03711 | 71.0779 |
Cysteine | C | Cys | C3H5NOS | 103.00919 | 103.1429 |
Aspartic acid | D | Asp | C4H5NO3 | 115.02694 | 115.0874 |
Glutamic acid | E | Glu | C5H7NO3 | 129.04259 | 129.1140 |
Phenylalanine | F | Phe | C9H9NO | 147.06841 | 147.1739 |
Glycine | G | Gly | C2H3NO | 57.02146 | 57.0513 |
Histidine | H | His | C6H7N3O | 137.05891 | 137.1393 |
Isoleucine | I | Ile | C6H11NO | 113.08406 | 113.1576 |
Lysine | K | Lys | C6H12N2O | 128.09496 | 128.1723 |
Leucine | L | Leu | C6H11NO | 113.08406 | 113.1576 |
Methionine | M | Met | C5H9NOS | 131.04049 | 131.1961 |
Asparagine | N | Asn | C4H6N2O2 | 114.04293 | 114.1026 |
Pyrrolysine | O | Pyl | C12H19N3O2 | 237.14773 | 237.2982 |
Proline | P | Pro | C5H7NO | 97.05276 | 97.1152 |
Glutamine | Q | Gln | C5H8N2O2 | 128.05858 | 128.1292 |
Arginine | R | Arg | C6H12N4O | 156.10111 | 156.1857 |
Serine | S | Ser | C3H5NO2 | 87.03203 | 87.0773 |
Threonine | T | Thr | C4H7NO2 | 101.04768 | 101.1039 |
Selenocysteine | U | Sec | C3H5NOSe | 150.95364 | 150.0489 |
Valine | V | Val | C5H9NO | 99.06841 | 99.1311 |
Tryptophan | W | Trp | C11H10N2O | 186.07931 | 186.2099 |
Tyrosine | Y | Tyr | C9H9NO2 | 163.06333 | 163.1733 |
The table below lists the abundance of amino acids in E.coli cells and the metabolic cost (ATP) for synthesis of the amino acids. Negative numbers indicate the metabolic processes are energy favorable and do not cost net ATP of the cell. [12] The abundance of amino acids includes amino acids in free form and in polymerization form (proteins).
Amino acid | Short | Abbrev. | Abundance (# of molecules (×108) per E. coli cell) | ATP cost in synthesis | |
---|---|---|---|---|---|
Aerobic conditions | Anaerobic conditions | ||||
Alanine | A | Ala | 2.9 | -1 | 1 |
Cysteine | C | Cys | 0.52 | 11 | 15 |
Aspartic acid | D | Asp | 1.4 | 0 | 2 |
Glutamic acid | E | Glu | 1.5 | -7 | -1 |
Phenylalanine | F | Phe | 1.1 | -6 | 2 |
Glycine | G | Gly | 3.5 | -2 | 2 |
Histidine | H | His | 0.54 | 1 | 7 |
Isoleucine | I | Ile | 1.7 | 7 | 11 |
Lysine | K | Lys | 2.0 | 5 | 9 |
Leucine | L | Leu | 2.6 | -9 | 1 |
Methionine | M | Met | 0.88 | 21 | 23 |
Asparagine | N | Asn | 1.4 | 3 | 5 |
Pyrrolysine | O | Pyl | - | - | - |
Proline | P | Pro | 1.3 | -2 | 4 |
Glutamine | Q | Gln | 1.5 | -6 | 0 |
Arginine | R | Arg | 1.7 | 5 | 13 |
Serine | S | Ser | 1.2 | -2 | 2 |
Threonine | T | Thr | 1.5 | 6 | 8 |
Selenocysteine | U | Sec | - | - | - |
Valine | V | Val | 2.4 | -2 | 2 |
Tryptophan | W | Trp | 0.33 | -7 | 7 |
Tyrosine | Y | Tyr | 0.79 | -8 | 2 |
Amino acid | Abbrev. | Remarks | |
---|---|---|---|
Alanine | A | Ala | Very abundant and very versatile, it is more stiff than glycine, but small enough to pose only small steric limits for the protein conformation. It behaves fairly neutrally, and can be located in both hydrophilic regions on the protein outside and the hydrophobic areas inside. |
Asparagine or aspartic acid | B | Asx | A placeholder when either amino acid may occupy a position |
Cysteine | C | Cys | The sulfur atom bonds readily to heavy metal ions. Under oxidizing conditions, two cysteines can join in a disulfide bond to form the amino acid cystine. When cystines are part of a protein, insulin for example, the tertiary structure is stabilized, which makes the protein more resistant to denaturation; therefore, disulfide bonds are common in proteins that have to function in harsh environments including digestive enzymes (e.g., pepsin and chymotrypsin) and structural proteins (e.g., keratin). Disulfides are also found in peptides too small to hold a stable shape on their own (e.g. insulin). |
Aspartic acid | D | Asp | Asp behaves similarly to glutamic acid, and carries a hydrophilic acidic group with strong negative charge. Usually, it is located on the outer surface of the protein, making it water-soluble. It binds to positively charged molecules and ions, and is often used in enzymes to fix the metal ion. When located inside of the protein, aspartate and glutamate are usually paired with arginine and lysine. |
Glutamic acid | E | Glu | Glu behaves similarly to aspartic acid, and has a longer, slightly more flexible side chain. |
Phenylalanine | F | Phe | Essential for humans, phenylalanine, tyrosine, and tryptophan contain a large, rigid aromatic group on the side chain. These are the biggest amino acids. Like isoleucine, leucine, and valine, these are hydrophobic and tend to orient towards the interior of the folded protein molecule. Phenylalanine can be converted into tyrosine. |
Glycine | G | Gly | Because of the two hydrogen atoms at the α carbon, glycine is not optically active. It is the smallest amino acid, rotates easily, and adds flexibility to the protein chain. It is able to fit into the tightest spaces, e.g., the triple helix of collagen. As too much flexibility is usually not desired, as a structural component, it is less common than alanine. |
Histidine | H | His | His is essential for humans. In even slightly acidic conditions, protonation of the nitrogen occurs, changing the properties of histidine and the polypeptide as a whole. It is used by many proteins as a regulatory mechanism, changing the conformation and behavior of the polypeptide in acidic regions such as the late endosome or lysosome, enforcing conformation change in enzymes. However, only a few histidines are needed for this, so it is comparatively scarce. |
Isoleucine | I | Ile | Ile is essential for humans. Isoleucine, leucine, and valine have large aliphatic hydrophobic side chains. Their molecules are rigid, and their mutual hydrophobic interactions are important for the correct folding of proteins, as these chains tend to be located inside of the protein molecule. |
Leucine or isoleucine | J | Xle | A placeholder when either amino acid may occupy a position |
Lysine | K | Lys | Lys is essential for humans, and behaves similarly to arginine. It contains a long, flexible side chain with a positively charged end. The flexibility of the chain makes lysine and arginine suitable for binding to molecules with many negative charges on their surfaces. E.g., DNA-binding proteins have their active regions rich with arginine and lysine. The strong charge makes these two amino acids prone to be located on the outer hydrophilic surfaces of the proteins; when they are found inside, they are usually paired with a corresponding negatively charged amino acid, e.g., aspartate or glutamate. |
Leucine | L | Leu | Leu is essential for humans, and behaves similarly to isoleucine and valine. |
Methionine | M | Met | Met is essential for humans. Always the first amino acid to be incorporated into a protein, it is sometimes removed after translation. Like cysteine, it contains sulfur, but with a methyl group instead of hydrogen. This methyl group can be activated, and is used in many reactions where a new carbon atom is being added to another molecule. |
Asparagine | N | Asn | Similar to aspartic acid, Asn contains an amide group where Asp has a carboxyl. |
Pyrrolysine | O | Pyl | Similar to lysine, but it has a pyrroline ring attached. |
Proline | P | Pro | Pro contains an unusual ring to the N-end amine group, which forces the CO-NH amide sequence into a fixed conformation. It can disrupt protein folding structures like α helix or β sheet, forcing the desired kink in the protein chain. Common in collagen, it often undergoes a post-translational modification to hydroxyproline. |
Glutamine | Q | Gln | Similar to glutamic acid, Gln contains an amide group where Glu has a carboxyl. Used in proteins and as a storage for ammonia, it is the most abundant amino acid in the body. |
Arginine | R | Arg | Functionally similar to lysine. |
Serine | S | Ser | Serine and threonine have a short group ended with a hydroxyl group. Its hydrogen is easy to remove, so serine and threonine often act as hydrogen donors in enzymes. Both are very hydrophilic, so the outer regions of soluble proteins tend to be rich with them. |
Threonine | T | Thr | Essential for humans, Thr behaves similarly to serine. |
Selenocysteine | U | Sec | The selenium analog of cysteine, in which selenium replaces the sulfur atom. |
Valine | V | Val | Essential for humans, Val behaves similarly to isoleucine and leucine. |
Tryptophan | W | Trp | Essential for humans, Trp behaves similarly to phenylalanine and tyrosine. It is a precursor of serotonin and is naturally fluorescent. |
Unknown | X | Xaa | Placeholder when the amino acid is unknown or unimportant. |
Tyrosine | Y | Tyr | Tyr behaves similarly to phenylalanine (precursor to tyrosine) and tryptophan, and is a precursor of melanin, epinephrine, and thyroid hormones. Naturally fluorescent, its fluorescence is usually quenched by energy transfer to tryptophans. |
Glutamic acid or glutamine | Z | Glx | A placeholder when either amino acid may occupy a position |
Amino acids can be classified according to the properties of their main products: [13]
Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.
The genetic code is the set of rules used by living cells to translate information encoded within genetic material into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.
Selenocysteine is the 21st proteinogenic amino acid. Selenoproteins contain selenocysteine residues. Selenocysteine is an analogue of the more common cysteine with selenium in place of the sulfur.
In molecular biology, a stop codon is a codon that signals the termination of the translation process of the current protein. Most codons in messenger RNA correspond to the addition of an amino acid to a growing polypeptide chain, which may ultimately become a protein; stop codons signal the termination of this process by binding release factors, which cause the ribosomal subunits to disassociate, releasing the amino acid chain.
Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group -NH
2 but is rather a secondary amine. The secondary amine nitrogen is in the protonated form (NH2+) under biological conditions, while the carboxyl group is in the deprotonated −COO− form. The "side chain" from the α carbon connects to the nitrogen forming a pyrrolidine loop, classifying it as a aliphatic amino acid. It is non-essential in humans, meaning the body can synthesize it from the non-essential amino acid L-glutamate. It is encoded by all the codons starting with CC (CCU, CCC, CCA, and CCG).
Pyrrolysine is an α-amino acid that is used in the biosynthesis of proteins in some methanogenic archaea and bacteria; it is not present in humans. It contains an α-amino group and a carboxylic acid group. Its pyrroline side-chain is similar to that of lysine in being basic and positively charged at neutral pH.
Isoleucine (symbol Ile or I) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH+3 form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a hydrocarbon side chain with a branch (a central carbon atom bound to three other carbon atoms). It is classified as a non-polar, uncharged (at physiological pH), branched-chain, aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it. Essential amino acids are necessary in the human diet. In plants isoleucine can be synthesized from threonine and methionine. In plants and bacteria, isoleucine is synthesized from pyruvate employing leucine biosynthesis enzymes. It is encoded by the codons AUU, AUC, and AUA.
The central dogma of molecular biology deals with the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:
The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information here means the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.
A biomolecule or biological molecule is loosely defined as a molecule produced by a living organism and essential to one or more typically biological processes. Biomolecules include large macromolecules such as proteins, carbohydrates, lipids, and nucleic acids, as well as small molecules such as vitamins and hormones. A more general name for this class of material is biological materials. Biomolecules are an important element of living organisms, those biomolecules are often endogenous, produced within the organism but organisms usually need exogenous biomolecules, for example certain nutrients, to survive.
In genetics, a nonsense mutation is a point mutation in a sequence of DNA that results in a nonsense codon, or a premature stop codon in the transcribed mRNA, and leads to a truncated, incomplete, and possibly nonfunctional protein product. Nonsense mutations are not always harmful; the functional effect of a nonsense mutation depends on many aspects, such as the location of the stop codon within the coding DNA. For example, the effect of a nonsense mutation depends on the proximity of the nonsense mutation to the original stop codon, and the degree to which functional subdomains of the protein are affected. As nonsense mutations leads to premature termination of polypeptide chains; they are also called chain termination mutations.
Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. In practice, it describes novel biological systems and biochemistries that differ from the canonical DNA–RNA-20 amino acid system. For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed xeno nucleic acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids, or “xeno amino acids” into proteins.
Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.
A peptide library is a tool for studying proteins. Peptide libraries typically contain a large number of peptides that have a systematic combination of amino acids. Usually, solid phase synthesis, e.g. resin as a flat surface or beads, is used for peptide library generation. Peptide libraries are a popular tool for experiments in drug design, protein–protein interactions, and other biochemical and pharmaceutical applications.
Eukaryotic translation termination factor1 (eRF1), also referred to as TB3-1 or SUP45L1, is a protein that is encoded by the ERF1 gene. In Eukaryotes, eRF1 is an essential protein involved in stop codon recognition in translation, termination of translation, and nonsense mediated mRNA decay via the SURF complex.
An expanded genetic code is an artificially modified genetic code in which one or more specific codons have been re-allocated to encode an amino acid that is not among the 22 common naturally-encoded proteinogenic amino acids.
In biology, the PYLIS downstream sequence is a stem-loop structure that appears on some mRNA sequences. This structural motif was previously thought to cause the UAG (amber) stop codon to be translated to the amino acid pyrrolysine instead of ending the protein translation. However, it has been shown that PYLIS has no effect upon the efficiency of the UAG suppression, hence even its name is, in fact, incorrect.
A codon table can be used to translate a genetic code into a sequence of amino acids. The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. The mRNA sequence is determined by the sequence of genomic DNA. In this context, the standard genetic code is referred to as translation table 1. It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5′-to-3′ direction. Different tables with alternate codons are used depending on the source of the genetic code, such as from a cell nucleus, mitochondrion, plastid, or hydrogenosome.
In biochemistry, non-coded or non-proteinogenic amino acids are distinct from the 22 proteinogenic amino acids, which are naturally encoded in the genome of organisms for the assembly of proteins. However, over 140 non-proteinogenic amino acids occur naturally in proteins and thousands more may occur in nature or be synthesized in the laboratory. Chemically synthesized amino acids can be called unnatural amino acids. Unnatural amino acids can be synthetically prepared from their native analogs via modifications such as amine alkylation, side chain substitution, structural bond extension cyclization, and isosteric replacements within the amino acid backbone. Many non-proteinogenic amino acids are important: