Monoisotopic mass

Last updated

Monoisotopic mass (Mmi) is one of several types of molecular masses used in mass spectrometry. The theoretical monoisotopic mass of a molecule is computed by taking the sum of the accurate masses (including mass defect) of the most abundant naturally occurring stable isotope of each atom in the molecule. For small molecules made up of low atomic number elements the monoisotopic mass is observable as an isotopically pure peak in a mass spectrum. This differs from the nominal molecular mass, which is the sum of the mass number of the primary isotope of each atom in the molecule and is an integer. [1] It also is different from the molar mass, which is a type of average mass. For some atoms like carbon, oxygen, hydrogen, nitrogen, and sulfur, the Mmi of these elements is exactly the same as the mass of its natural isotope, which is the lightest one. However, this does not hold true for all atoms. Iron's most common isotope has a mass number of 56, while the stable isotopes of iron vary in mass number from 54 to 58. Monoisotopic mass is typically expressed in daltons (Da), also called unified atomic mass units (u).

Contents

Nominal mass vs monoisotopic mass

Orbitrap Mass Analyzers Orbitrap Mass Analyzers.jpg
Orbitrap Mass Analyzers

Nominal mass

Nominal mass is a term used in high level mass spectrometric discussions, it can be calculated using the mass number of the most abundant isotope of each atom, without regard for the mass defect. For example, when calculating the nominal mass of a molecule of nitrogen (N2) and ethylene (C2H4) it comes out as.

N2

(2*14)= 28 Da

C2H4

(2*12)+(4*1)= 28 Da

What this means, is when using mass spectrometer with insufficient source of power "low resolution" like a quadrupole mass analyser or a quadrupolar ion trap, these two molecules won't be able to be distinguished after ionization, this will be shown by the cross lapping of the m/z peaks. If a high-resolution instrument like an orbitrap or an ion cyclotron resonance is used, these two molecules can be distinguished.

Monoisotopic mass

When calculating the monoisotopic masses, using the mass of the primary isotope of the elements including the mass defect: [2]

N2

(2*14.003)= 28.006 Da

C2H4

(2*12.000)+(4*1.008)= 28.032 Da

where it will be clear that two different molecules are going through the mass spectrometer. Note that the masses used are neither the integer mass numbers nor the terrestrially averaged standard atomic weights as found in a periodic table.

The monoisotopic mass is very useful when analyzing small organic compounds since compounds with similar weights will not be differentiated if the nominal mass is used. For example, when comparing tyrosine which has a molecular structure of C9H11NO3 with a monoisotopic mass of 182.081 Da and methionine sulphone C5H11NO4S which clearly are 2 different compounds but methionine sulphone has a 182.048 Da.

Isotopic abundance

If a piece of iron was put into a mass spectrometer to be analyzed, the mass spectra of iron (Fe) would result in multiple mass spectral peaks due to the existence of the iron isotopes, 54
Fe
, 56
Fe
, 57
Fe
, 58
Fe
. [3] The mass spectrum of Fe represents that the monoisotopic mass is not always the most abundant isotopic peak in a spectrum despite it containing the most abundant isotope for each atom. This is because as the number of atoms in a molecule increases, the probability that the molecule contains at least one heavy isotope atom also increases. If there are 100 carbon atoms 12
C
in a molecule, and each carbon has a probability of approximately 1% of being a heavy isotope 13
C
, the whole molecule is highly likely to contain at least one heavy isotope atom of carbon-13 and the most abundant isotopic composition will no longer be the same as the monoisotopic peak.

The monoisotopic peak is sometimes not observable for two primary reasons. First, the monoisotopic peak may not be resolved from the other isotopic peaks. In this case, only the average molecular mass may be observed. In some cases, even when the isotopic peaks are resolved, such as with a high-resolution mass spectrometer, the monoisotopic peak may be below the noise level and higher isotopes may dominate completely.

Monoisotopic mass in spectrometry

The monoisotopic mass is not used frequently in fields outside of mass spectrometry because other fields cannot distinguish molecules of different isotopic composition. For this reason, mostly the average molecular mass or even more commonly the molar mass is used. For most purposes such as weighing out bulk chemicals only the molar mass is relevant since what one is weighing is a statistical distribution of varying isotopic compositions.

This concept is most helpful in mass spectrometry because individual molecules (or atoms, as in ICP-MS) are measured, and not their statistical average as a whole. Since mass spectrometry is often used for quantifying trace-level compounds, maximizing the sensitivity of the analysis is usually desired. By choosing to look for the most abundant isotopic version of a molecule, the analysis is likely to be most sensitive, which enables even smaller amounts of the target compounds to be quantified. Therefore, the concept is very useful to analysts looking for trace-level residues of organic molecules, such as pesticide residue in foods and agricultural products.

Isotopic masses can play an important role in physics but physics less often deals with molecules. Molecules differing by an isotope are sometimes distinguished from one another in molecular spectroscopy or related fields; however, it is usually a single isotope change on a larger molecule that can be observed rather than the isotopic composition of an entire molecule. The isotopic substitution changes the vibrational frequencies of various bonds in the molecule, which can have observable effects on the chemical reactivity via the kinetic isotope effect, and even by extension the biological activity in some cases.

See also

Related Research Articles

The molecular mass (m) is the mass of a given molecule: it is measured in daltons or atomic mass (Da or u). Different molecules of the same compound may have different molecular masses because they contain different isotopes of an element. The related quantity relative molecular mass, as defined by IUPAC, is the ratio of the mass of a molecule to the unified atomic mass unit (also known as the dalton) and is unitless. The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of a substance and is expressed in g/mol. That makes the molar mass an average of many particles or molecules, and the molecular mass the mass of one specific particle or molecule. The molar mass is usually the more appropriate figure when dealing with macroscopic (weigh-able) quantities of a substance.

The mole (symbol mol) is the unit of amount of substance in the International System of Units (SI). The quantity amount of substance is a measure of how many elementary entities of a given substance are in an object or sample. The mole is defined as containing exactly 6.02214076×1023 elementary entities. Depending on what the substance is, an elementary entity may be an atom, a molecule, an ion, an ion pair, or a subatomic particle such as an electron. For example, 10 moles of water (a chemical compound) and 10 moles of mercury (a chemical element), contain equal amounts of substance and the mercury contains exactly one atom for each molecule of the water, despite the two having different volumes and different masses.

The dalton or unified atomic mass unit is a non-SI unit of mass widely used in physics and chemistry. It is defined as 112 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted mu, is defined identically, giving mu = m(12C)/12 = 1 Da.

In chemistry, the molar mass of a chemical compound is defined as the ratio between the mass and the amount of substance of any sample of said compound. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities.

Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.

<span class="mw-page-title-main">Mass spectrum</span> Tool in chemical analysis

A mass spectrum is a histogram plot of intensity vs. mass-to-charge ratio (m/z) in a chemical sample, usually acquired using an instrument called a mass spectrometer. Not all mass spectra of a given substance are the same; for example, some mass spectrometers break the analyte molecules into fragments; others observe the intact molecular masses with little fragmentation. A mass spectrum can represent many different types of information based on the type of mass spectrometer and the specific experiment applied. Common fragmentation processes for organic molecules are the McLafferty rearrangement and alpha cleavage. Straight chain alkanes and alkyl groups produce a typical series of peaks: 29 (CH3CH2+), 43 (CH3CH2CH2+), 57 (CH3CH2CH2CH2+), 71 (CH3CH2CH2CH2CH2+) etc.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC-MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC-MS include drug detection, fire investigation, environmental analysis, explosives investigation, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC-MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth.

Isotopic labeling is a technique used to track the passage of an isotope through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway. The nuclides used in isotopic labeling may be stable nuclides or radionuclides. In the latter case, the labeling is called radiolabeling.

<span class="mw-page-title-main">Fast atom bombardment</span>

Fast atom bombardment (FAB) is an ionization technique used in mass spectrometry in which a beam of high energy atoms strikes a surface to create ions. It was developed by Michael Barber at the University of Manchester in 1980. When a beam of high energy ions is used instead of atoms, the method is known as liquid secondary ion mass spectrometry (LSIMS). In FAB and LSIMS, the material to be analyzed is mixed with a non-volatile chemical protection environment, called a matrix, and is bombarded under vacuum with a high energy beam of atoms. The atoms are typically from an inert gas such as argon or xenon. Common matrices include glycerol, thioglycerol, 3-nitrobenzyl alcohol (3-NBA), 18-crown-6 ether, 2-nitrophenyloctyl ether, sulfolane, diethanolamine, and triethanolamine. This technique is similar to secondary ion mass spectrometry and plasma desorption mass spectrometry.

<span class="mw-page-title-main">Proton nuclear magnetic resonance</span> NMR via protons, hydrogen-1 nuclei

Proton nuclear magnetic resonance is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. In samples where natural hydrogen (H) is used, practically all the hydrogen consists of the isotope 1H.

The nitrogen rule states that organic compounds containing exclusively hydrogen, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, and the halogens either have (1) an odd nominal mass that indicates an odd number of nitrogen atoms are present or (2) an even nominal mass that indicates an even number of nitrogen atoms in the molecular formula of the neutral compound. The nitrogen rule is not a rule as much as a general principle which may prove useful when attempting to solve organic mass spectrometry structures.

<span class="mw-page-title-main">Isotope-ratio mass spectrometry</span>

Isotope-ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in a given sample.

<span class="mw-page-title-main">Mass (mass spectrometry)</span> Physical quantities being measured

The mass recorded by a mass spectrometer can refer to different physical quantities depending on the characteristics of the instrument and the manner in which the mass spectrum is displayed.

<span class="mw-page-title-main">Mass spectral interpretation</span>

Mass spectral interpretation is the method employed to identify the chemical formula, characteristic fragment patterns and possible fragment ions from the mass spectra. Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass spectrometry. Organic chemists obtain mass spectra of chemical compounds as part of structure elucidation and the analysis is part of many organic chemistry curricula.

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.

<span class="mw-page-title-main">Atomic mass</span> Rest mass of an atom in its ground state

The atomic mass (ma or m) is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1 Da is defined as 112 of the mass of a free carbon-12 atom at rest in its ground state. The protons and neutrons of the nucleus account for nearly all of the total mass of atoms, with the electrons and nuclear binding energy making minor contributions. Thus, the numeric value of the atomic mass when expressed in daltons has nearly the same value as the mass number. Conversion between mass in kilograms and mass in daltons can be done using the atomic mass constant .

<span class="mw-page-title-main">Fragmentation (mass spectrometry)</span>

In mass spectrometry, fragmentation is the dissociation of energetically unstable molecular ions formed from passing the molecules mass spectrum. These reactions are well documented over the decades and fragmentation pattern is useful to determine the molar weight and structural information of the unknown molecule. Fragmentation that occurs in tandem mass spectrometry experiments has been a recent focus of research, because this data helps facilitate the identification of molecules.

<span class="mw-page-title-main">Nanoscale secondary ion mass spectrometry</span>

NanoSIMS is an analytical instrument manufactured by CAMECA which operates on the principle of secondary ion mass spectrometry. The NanoSIMS is used to acquire nanoscale resolution measurements of the elemental and isotopic composition of a sample. The NanoSIMS is able to create nanoscale maps of elemental or isotopic distribution, parallel acquisition of up to seven masses, isotopic identification, high mass resolution, subparts-per-million sensitivity with spatial resolution down to 50 nm.

<span class="mw-page-title-main">Position-specific isotope analysis</span>

Position-specific isotope analysis, also called site-specific isotope analysis, is a branch of isotope analysis aimed at determining the isotopic composition of a particular atom position in a molecule. Isotopes are elemental variants with different numbers of neutrons in their nuclei, thereby having different atomic masses. Isotopes are found in varying natural abundances depending on the element; their abundances in specific compounds can vary from random distributions due to environmental conditions that act on the mass variations differently. These differences in abundances are called "fractionations," which are characterized via stable isotope analysis.

References

  1. Monoisotopic mass spectrum. IUPAC Compendium of Chemical Terminology. 2009. doi:10.1351/goldbook.M04014. ISBN   978-0-9678550-9-7.
  2. Yergey, James.; Heller, David.; Hansen, Gordon.; Cotter, Robert J.; Fenselau, Catherine. (February 1983). "Isotopic distributions in mass spectra of large molecules". Analytical Chemistry. 55 (2): 353–356. doi:10.1021/ac00253a037.
  3. "Iron".