Extractive electrospray ionization

Last updated
Extractive Electrospray Ionization (EESI)
Schematic drawing of Extractive Electrospray Ionization Source for mass spectrometry.jpg
Schematic of extractive electrospray
AcronymEESI
Classification Mass spectrometry
Analytes Organic molecules
Biomolecules
Other techniques
Related Desorption electrospray ionization
Electrospray ionization
Atmospheric pressure chemical ionization
ambient ionization
mass spectrometry
Desorption atmospheric pressure photoionization

Extractive electrospray ionization (EESI) [1] [2] is a spray-type, ambient ionization source [3] [4] [5] [6] [7] in mass spectrometry that uses two colliding aerosols, one of which is generated by electrospray. In standard EESI, syringe pumps provide the liquids for both an electrospray and a sample spray. In neutral desorption EESI (ND-EESI), the liquid for the sample aerosol is provided by a flow of nitrogen.

Contents

Principle of operation

A ND-EESI experiment is simple in concept and implementation. A room temperature (20 °C) nitrogen gas stream is flowed through a narrow opening (i.d.~0.1 mm) to form a sharp jet targeted at a surface. The nitrogen molecules desorb analytes from the surface. The jet is only 2–3 mm above the surface, and the gas flow is about 200 mL/min with gas speeds around 300 m/s. The sample area is about 10 mm2. [8] An optional enclosure, most commonly made of glass, can cover the sampling area to ensure proper positioning of the gas jet and the sample transfer line. A tube carries the neutral aerosol to the ESI spray.

The sample spray in EESI produces a liquid aerosol with the analyte in sample droplets. [9] The ESI spray produces droplets with protons. The sample droplets and the proton-rich droplets bump into each other. Each droplet has properties: analyte solubility in the ESI spray solvent and surface tension of the spray solution and of the sample solution. With dissimilar properties, some collisions produce no extraction because the droplets “bounce", but with similar properties, some collisions produce coalescence and liquid-liquid extraction. The extent of the extraction depends on the similarity of the properties.

Applications

Ambient ionization techniques are attractive for many samples for their high tolerance to complex mixtures and for fast testing. EESI has been employed for the rapid characterization of living objects, [10] native proteins, [11] and metabolic biomarkers. [12] [13] [14]

EESI has been applied to food samples, urine, serum, exhaled breath and protein samples. A general investigation of urine, serum, milk and milk powders was reported in 2006. [15] Breath analysis of valproic acid with EESI was reported in 2007. [16] The maturity of fruit was classified with the combination of EESI and principal component analysis, [17] and live samples were tested a short time later. [18] Perfumes were classified with the combination of EESI and characteristic ions. [13] [19] On-line monitoring was performed in 2008. [20] Melamine in tainted milk was detected in 2009. [21] Breath analysis was performed with the combination of EESI and an ion trap mass spectrometer. [22] Beverages, [23] [24] over-the-counter drugs, [25] uranyl waste water, [26] [27] and aquiculture water [28] were tested with EESI between 2010 and 2016.

See also

Related Research Articles

<span class="mw-page-title-main">Ion source</span> Device that creates charged atoms and molecules (ions)

An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.

<span class="mw-page-title-main">Electrospray ionization</span> Technique used in mass spectroscopy

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.

<span class="mw-page-title-main">Lipidomics</span>

Lipidomics is the large-scale study of pathways and networks of cellular lipids in biological systems. The word "lipidome" is used to describe the complete lipid profile within a cell, tissue, organism, or ecosystem and is a subset of the "metabolome" which also includes other major classes of biological molecules. Lipidomics is a relatively recent research field that has been driven by rapid advances in technologies such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, dual polarisation interferometry and computational methods, coupled with the recognition of the role of lipids in many metabolic diseases such as obesity, atherosclerosis, stroke, hypertension and diabetes. This rapidly expanding field complements the huge progress made in genomics and proteomics, all of which constitute the family of systems biology.

<span class="mw-page-title-main">Matrix-assisted laser desorption/ionization</span> Ionization technique

In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy-absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of biomolecules and various organic molecules, which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI typically produces far fewer multi-charged ions.

<span class="mw-page-title-main">Liquid chromatography–mass spectrometry</span> Analytical chemistry technique

Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography – MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify each separated component. MS is not only sensitive, but provides selective detection, relieving the need for complete chromatographic separation. LC–MS is also appropriate for metabolomics because of its good coverage of a wide range of chemicals. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC–MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries. Since the early 2000s, LC–MS has also begun to be used in clinical applications.

In mass spectrometry, direct analysis in real time (DART) is an ion source that produces electronically or vibronically excited-state species from gases such as helium, argon, or nitrogen that ionize atmospheric molecules or dopant molecules. The ions generated from atmospheric or dopant molecules undergo ion-molecule reactions with the sample molecules to produce analyte ions. Analytes with low ionization energy may be ionized directly. The DART ionization process can produce positive or negative ions depending on the potential applied to the exit electrode.

<span class="mw-page-title-main">Thermospray</span> Soft ionization source

Thermospray is a soft ionization source by which a solvent flow of liquid sample passes through a very thin heated column to become a spray of fine liquid droplets. As a form of atmospheric pressure ionization in mass spectrometry these droplets are then ionized via a low-current discharge electrode to create a solvent ion plasma. A repeller then directs these charged particles through the skimmer and acceleration region to introduce the aerosolized sample to a mass spectrometer. It is particularly useful in liquid chromatography-mass spectrometry (LC-MS).

<span class="mw-page-title-main">Desorption electrospray ionization</span>

Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems allow for chemical determinations of samples. DESI employs a fast-moving charged solvent stream, at an angle relative to the sample surface, to extract analytes from the surfaces and propel the secondary ions toward the mass analyzer. This tandem technique can be used to analyze forensics analyses, pharmaceuticals, plant tissues, fruits, intact biological tissues, enzyme-substrate complexes, metabolites and polymers. Therefore, DESI-MS may be applied in a wide variety of sectors including food and drug administration, pharmaceuticals, environmental monitoring, and biotechnology.

Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration, sample phase, and composition of the analyte solution. Quite possibly the most important consideration in sample preparation is knowing what phase the sample must be in for analysis to be successful. In some cases the analyte itself must be purified before entering the ion source. In other situations, the matrix, or everything in the solution surrounding the analyte, is the most important factor to consider and adjust. Often, sample preparation itself for mass spectrometry can be avoided by coupling mass spectrometry to a chromatography method, or some other form of separation before entering the mass spectrometer. In some cases, the analyte itself must be adjusted so that analysis is possible, such as in protein mass spectrometry, where usually the protein of interest is cleaved into peptides before analysis, either by in-gel digestion or by proteolysis in solution.

<span class="mw-page-title-main">Laser spray ionization</span>

Laser spray ionization refers to one of several methods for creating ions using a laser interacting with a spray of neutral particles or ablating material to create a plume of charged particles. The ions thus formed can be separated by m/z with mass spectrometry. Laser spray is one of several ion sources that can be coupled with liquid chromatography-mass spectrometry for the detection of larger molecules.

<span class="mw-page-title-main">Desorption atmospheric pressure photoionization</span> Ambient ionization technique

Desorption atmospheric pressure photoionization (DAPPI) is an ambient ionization technique for mass spectrometry that uses hot solvent vapor for desorption in conjunction with photoionization. Ambient Ionization techniques allow for direct analysis of samples without pretreatment. The direct analysis technique, such as DAPPI, eliminates the extraction steps seen in most nontraditional samples. DAPPI can be used to analyze bulkier samples, such as, tablets, powders, resins, plants, and tissues. The first step of this technique utilizes a jet of hot solvent vapor. The hot jet thermally desorbs the sample from a surface. The vaporized sample is then ionized by the vacuum ultraviolet light and consequently sampled into a mass spectrometer. DAPPI can detect a range of both polar and non-polar compounds, but is most sensitive when analyzing neutral or non-polar compounds. This technique also offers a selective and soft ionization for highly conjugated compounds.

<span class="mw-page-title-main">Ambient ionization</span>

Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed and ionized by chemical ionization, or laser desorbed or ablated and post-ionized before they enter the mass spectrometer.

<span class="mw-page-title-main">Laser ablation electrospray ionization</span> Ambient ionization method

Laser ablation electrospray ionization (LAESI) is an ambient ionization method for mass spectrometry that combines laser ablation from a mid-infrared (mid-IR) laser with a secondary electrospray ionization (ESI) process. The mid-IR laser is used to generate gas phase particles which are then ionized through interactions with charged droplets from the ESI source. LAESI was developed in Professor Akos Vertes lab by Peter Nemes in 2007 and it was marketed commercially by Protea Biosciences, Inc until 2017. Fiber-LAESI for single-cell analysis approach was developed by Bindesh Shrestha in Professor Vertes lab in 2009. LAESI is a novel ionization source for mass spectrometry (MS) that has been used to perform MS imaging of plants, tissues, cell pellets, and even single cells. In addition, LAESI has been used to analyze historic documents and untreated biofluids such as urine and blood. The technique of LAESI is performed at atmospheric pressure and therefore overcomes many of the obstacles of traditional MS techniques, including extensive and invasive sample preparation steps and the use of high vacuum. Because molecules and aerosols are ionized by interacting with an electrospray plume, LAESI's ionization mechanism is similar to SESI and EESI techniques.

<span class="mw-page-title-main">Surface-assisted laser desorption/ionization</span>

Surface-assisted laser desorption/ionization (SALDI) is a soft laser desorption technique used for mass spectrometry analysis of biomolecules, polymers, and small organic molecules. In its first embodiment Koichi Tanaka used a cobalt/glycerol liquid matrix and subsequent applications included a graphite/glycerol liquid matrix as well as a solid surface of porous silicon. The porous silicon represents the first matrix-free SALDI surface analysis allowing for facile detection of intact molecular ions, these porous silicon surfaces also facilitated the analysis of small molecules at the yoctomole level. At present laser desorption/ionization methods using other inorganic matrices such as nanomaterials are often regarded as SALDI variants. As an example, silicon nanowires as well as Titania nanotube arrays (NTA) have been used as substrates to detect small molecules. SALDI is used to detect proteins and protein-protein complexes. A related method named "ambient SALDI" - which is a combination of conventional SALDI with ambient mass spectrometry incorporating the direct analysis real time (DART) ion source has also been demonstrated. SALDI is considered one of the most important techniques in MS and has many applications.

<span class="mw-page-title-main">Renato Zenobi</span> Swiss chemist

Renato Zenobi is a Swiss chemist. He is Professor of Chemistry at ETH Zurich. Throughout his career, Zenobi has contributed to the field of analytical chemistry.

Electrostatic spray ionization (ESTASI) is an ambient ionization method for mass spectrometry (MS) analysis of samples located on a flat or porous surface, or inside a microchannel. It was developed in 2011 by Professor Hubert H. Girault’s group at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. In a typical ESTASI process, a droplet of a protic solvent containing analytes is deposited on a sample area of interest which itself is mounted to an insulating substrate. Under this substrate and right below the droplet, an electrode is placed and connected with a pulsed high voltage (HV) to electrostatically charge the droplet during pulsing. When the electrostatic pressure is larger than the surface tension, droplets and ions are sprayed. ESTASI is a contactless process based on capacitive coupling. One advantage of ESTASI is, that the electrode and sample droplet act contact-less avoiding thereby any oxidation or reduction of the sample compounds at the electrode surface, which often happens during standard electrospray ionization (ESI). ESTASI is a powerful new ambient ionization technique that has already found many applications in the detection of different analytes, such as organic molecules, peptides and proteins with molecule weight up to 70 kDa. Furthermore, it was used to couple MS with various separation techniques including capillary electrophoresis and gel isoelectric focusing, and it was successfully applied under atmospheric pressure to the direct analysis of samples with only few preparation steps.

<span class="mw-page-title-main">MasSpec Pen</span> System to collect samples for cancer tests

The MasSpec Pen, or the precìso MasSpec Pen System, is a mass spectrometry (MS) based cancer detection and diagnosis system that can be used for ex vivo and in vivo tissue sample analysis. The system collects biological molecules from a tissue sample surface via a solid-liquid extraction mechanism and transports the molecules to a mass spectrometer for analysis. The composition of the extracted molecules can then be used to predict if the tissue sample analyzed contains cancerous cells using machine learning algorithms and statistical models. In early-stage clinical research, the MasSpec Pen system was able to distinguish various cancer tissues, including thyroid, breast, lung, and ovarian tumor tissues, from their normal counterparts with an overall accuracy of 96.3%. A follow-up study in illustrating the use of the device for detection of serous ovarian carcinoma in ex vivo tissue biopsies allowed for the discrimination of normal and cancerous ovarian samples with a clinical sensitivity and specificity of 94.0% and 94.4%, respectively.

<span class="mw-page-title-main">Secondary electrospray ionization</span> Ambient ionization technique

Secondary electro-spray ionization (SESI) is an ambient ionization technique for the analysis of trace concentrations of vapors, where a nano-electrospray produces charging agents that collide with the analyte molecules directly in gas-phase. In the subsequent reaction, the charge is transferred and vapors get ionized, most molecules get protonated and deprotonated. SESI works in combination with mass spectrometry or ion-mobility spectrometry.

Probe electrospray ionization (PESI) is an electrospray-based ambient ionization technique which is coupled with mass spectrometry for sample analysis. Unlike traditional mass spectrometry ion sources which must be maintained in a vacuum, ambient ionization techniques permit sample ionization under ambient conditions, allowing for the high-throughput analysis of samples in their native state, often with minimal or no sample pre-treatment. The PESI ion source simply consists of a needle to which a high voltage is applied following sample pick-up, initiating electrospray directly from the solid needle.

References

  1. Chen, H., A. Venter, and R.G. Cooks, Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chemical Communications, 2006(19): p. 2042-2044.
  2. Chen, H., et al. Extractive Electrospray Ionization Time-of-Flight Mass Spectrometry for Direct Fingerprinting of Ambient Samples. in 17th International Mass Spectrometry Conference. 2006. Prague.
  3. Chen, H., G. Gamez, and R. Zenobi, What Can We Learn from Ambient Ionization Techniques? Journal of the American Society for Mass Spectrometry, 2009. 20(11): p. 1947-1963.
  4. Cooks, R.G., et al., Ambient Mass Spectrometry. Science, 2006. 311(5767): p. 1566-1570.
  5. Harris, G.A., A.S. Galhena, and F.M. Ferna?ndez, Ambient Sampling/Ionization Mass Spectrometry: Applications and Current Trends. Analytical Chemistry, 2011. 83(12): p. 4508-4538.
  6. Huang, M.-Z., et al., Ambient Ionization Mass Spectrometry. Annual Review of Analytical Chemistry, 2010. 3(1): p. 43-65.
  7. Van Berkel, G.J., S.P. Pasilis, and O. Ovchinnikova, Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry. Journal of Mass Spectrometry, 2008. 43(9): p. 1161-1180.
  8. Wu, Z., et al., Sampling analytes from cheese products for fast detection using neutral desorption extractive electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2010. 397(4): p. 1549-1556.
  9. Law, W.S., et al., On the Mechanism of Extractive Electrospray Ionization. Analytical Chemistry, 2010. 82(11): p. 4494-4500.
  10. Chen, H., et al., Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2007. 119(40): p. 7735-7738.
  11. Hu, B., et al., Direct detection of native proteins in biological matrices using extractive electrospray ionization mass spectrometry. Analyst, 2011. 136(18): p. 3599-3601.
  12. Zhou, Z.Q., et al., Rapid detection of atrazine and its metabolite in raw urine by extractive electrospray ionization mass spectrometry. Metabolomics, 2007. 3(2): p. 101–104.
  13. 1 2 Chingin, K., et al., Rapid classification of perfumes by extractive electrospray ionization mass spectrometry (EESI-MS). Rapid Commun. Mass Spectrom., 2008. 22(13): p. 2009–2014.
  14. Chen, H.W., et al., Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Angew. Chem. Int. Ed., 2007. 46(4): p. 580–583.
  15. Chen, H., et al. Extractive Electrospray Ionization Time-of-Flight Mass Spectrometry for Direct Fingerprinting of Ambient Samples. in 17th International Mass Spectrometry Conference. 2006. Prague, Czech Republic: IMSF.
  16. Chen, H., et al., Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry. 2007.
  17. Chen, H.W., et al., Differentiation of maturity and quality of fruit using noninvasive extractive electrospray ionization quadrupole time-of-flight mass spectrometry. Anal. Chem., 2007. 79(4): p. 1447–1455.
  18. Chen, H.W., et al., Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry. Angew. Chem. Int. Ed., 2007. 46(40): p. 7591–7594.
  19. Chingin, K., et al., Detection of diethyl phthalate in perfumes by extractive electrospray ionization mass spectrometry. Anal. Chem., 2009. 81(1): p. 123–129.
  20. Zhu, L., et al., Real-time, on-line monitoring of organic chemical reactions using extractive electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2008. 22(19): p. 2993–2998.
  21. Yang, S.P., et al., Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal. Chem., 2009. 81(7): p. 2426–2436.
  22. Ding, J., et al., Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst, 2009. 134: p. 2040–2050.
  23. Zhu, L., et al., Simultaneous sampling of volatile and non-volatile analytes in beer for fast fingerprinting by extractive electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2010. 398(1): p. 405-413.
  24. Hu, B., et al., Fast quantitative detection of cocaine in beverages using nanoextractive electrospray ionization tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2009. 21(2): p. 290-293.
  25. Gu, H.W., et al., Rapid analysis of aerosol drugs using nano extractive electrospray ionization tandem mass spectrometry. Analyst, 2010. 135(6): p. 1259–1267.
  26. Luo, M.B., et al., Extractive electrospray ionization mass spectrometry for sensitive detection of uranyl species in natural water samples. Anal. Chem., 2010. 82(1): p. 282–289.
  27. Liu, C., et al., Determination of uranium isotopic ratio (235U/238U) using extractive electrospray ionization tandem mass spectrometry. Journal of Analytical Atomic Spectrometry, 2011. 26(10): p. 2045-2051.
  28. Xiaowei Fang et al., Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry. Int. J. Environ. Res. Public Health 2016, 13(8), 814; https://doi.org/10.3390/ijerph13080814