Monoisotopic element

Last updated
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Monoisotopic and mononuclidic elements

Monoisotopic, but primordial radionuclides exist Monoisotopic, mononuclidic, radioactive elements.svg
  Monoisotopic and mononuclidic elements
     Monoisotopic, but primordial radionuclides exist

A monoisotopic element is an element which has only a single stable isotope (nuclide). There are 26 such elements, as listed.

Contents

Stability is experimentally defined for chemical elements, as there are a number of stable nuclides with atomic numbers over ~ 40 which are theoretically unstable, but apparently have half-lives so long that they have not been observed either directly or indirectly (from measurement of products) to decay.

Monoisotopic elements are characterized, except in one case, by odd numbers of protons (odd Z), and even numbers of neutrons. Because of the energy gain from nuclear pairing, the odd number of protons imparts instability to isotopes of an odd Z, which in heavier elements requires a completely paired set of neutrons to offset this tendency into stability. (The five stable nuclides with odd Z and odd neutron numbers are hydrogen-2, lithium-6, boron-10, nitrogen-14, and tantalum-180m1.)

The single monoisotopic exception to the odd Z rule is beryllium; its single stable, primordial isotope, beryllium-9, has 4 protons and 5 neutrons. This element is prevented from having a stable isotope with equal numbers of neutrons and protons (beryllium-8, with 4 of each) by its instability toward alpha decay, which is favored due to the extremely tight binding of helium-4 nuclei. It is prevented from having a stable isotope with 4 protons and 6 neutrons by the very large mismatch in proton/neutron ratio for such a light element. (Nevertheless, beryllium-10 has a half-life of 1.36 million years, which is too short to be primordial, but still indicates unusual stability for a light isotope with such an imbalance.)

Differentiation from mononuclidic elements

The set of monoisotopic elements overlap but are not the same as the set of 21 mononuclidic elements, which are characterized as having essentially only one isotope (nuclide) found in nature. [1] The reason for this is the occurrence of certain long-lived radioactive primordial nuclides in nature, which may form admixtures with the monoisotopics, and thus prevent them from being naturally mononuclidic. This happens in the cases of 7 of the monoisotopic elements. These isotopes are monoisotopic, but due to the presence of the long-lived radioactive primordial nuclide, are not mononuclidic. These elements are vanadium, rubidium, indium, lanthanum, europium, lutetium and rhenium. For indium and rhenium, the long-lived radionuclide is actually the most abundant isotope in nature, and the stable isotope is less abundant.

In 2 additional cases (bismuth [2] and protactinium), mononuclidic elements occur primordially which are not monoisotopic because the naturally occurring nuclide is radioactive, and thus the element has no stable isotopes at all. For an element to be monoisotopic, it must have one stable nuclide.

List of (observationally-stable) monoisotopic elements, ordered by atomic number and weight

Non-mononuclidic elements are marked with an asterisk, and the long-lived primordial radioisotope given. In two cases (indium and rhenium), the most abundant naturally occurring isotope is the mildly radioactive one, and in the case of europium, nearly half of it is.

  1. Beryllium-9
  2. Fluorine-19
  3. Sodium-23
  4. Aluminium-27
  5. Phosphorus-31
  6. Scandium-45
  7. Vanadium-51* naturally occurs with 0.25% of radioactive vanadium-50
  8. Manganese-55
  9. Cobalt-59
  10. Arsenic-75
  11. Rubidium-85* naturally occurs with 27.835% of radioactive rubidium-87
  12. Yttrium-89
  13. Niobium-93
  14. Rhodium-103
  15. Indium-113* naturally occurs with majority (95.7%) radioactive isotope indium-115
  16. Iodine-127
  17. Caesium-133
  18. Lanthanum-139* naturally occurs with 0.09% radioactive lanthanum-138
  19. Praseodymium-141
  20. Europium-153* naturally occurs with 47.8% radioactive europium-151
  21. Terbium-159
  22. Holmium-165
  23. Thulium-169
  24. Lutetium-175* naturally occurs with 2.59% radioactive lutetium-176
  25. Rhenium-185* naturally occurs with majority (62.6%) radioactive isotope rhenium-187
  26. Gold-197

See also

Related Research Articles

A chemical element is a chemical substance that cannot be broken down into other substances by chemical reactions. The basic particle that constitutes a chemical element is the atom. Chemical elements are identified by the number of protons in the nuclei of their atoms, known as the element's atomic number. For example, oxygen has an atomic number of 8, meaning that each oxygen atom has 8 protons in its nucleus. Two or more atoms of the same element can combine to form molecules, in contrast to chemical compounds or mixtures, which contain atoms of different elements. Atoms can be transformed into different elements in nuclear reactions, which change an atom's atomic number.

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

<span class="mw-page-title-main">Stable nuclide</span> Nuclide that does not undergo radioactive decay

Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in a process called Big Bang nucleosynthesis. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing hydrogen and helium. The rest is traces of other elements such as lithium and the hydrogen isotope deuterium. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium remains small, so that the universe still has approximately the same composition.

<span class="mw-page-title-main">Nuclide</span> Atomic species

A nuclide is a class of atoms characterized by their number of protons, Z, their number of neutrons, N, and their nuclear energy state.

The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by mass fraction, by mole fraction, or by volume fraction. Volume fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass fractions.

<span class="mw-page-title-main">Isotone</span> Different nuclides with the same neutron number

Two nuclides are isotones if they have the same neutron number N, but different proton number Z. For example, boron-12 and carbon-13 nuclei both contain 7 neutrons, and so are isotones. Similarly, 36S, 37Cl, 38Ar, 39K, and 40Ca nuclei are all isotones of 20 because they all contain 20 neutrons. Despite its similarity to the Greek for "same stretching", the term was formed by the German physicist K. Guggenheimer by changing the "p" in "isotope" from "p" for "proton" to "n" for "neutron".

Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly energetic charged particles from beyond Earth, ranging from protons, alpha particles, and nuclei of many heavier elements. About 1% of cosmic rays also consist of free electrons.

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.

A table or chart of nuclides is a two-dimensional graph of isotopes of the elements, in which one axis represents the number of neutrons and the other represents the number of protons in the atomic nucleus. Each point plotted on the graph thus represents a nuclide of a known or hypothetical chemical element. This system of ordering nuclides can offer a greater insight into the characteristics of isotopes than the better-known periodic table, which shows only elements and not their isotopes. The chart of the nuclides is also known as the Segrè chart, after the Italian physicist Emilio Segrè.

<span class="mw-page-title-main">Valley of stability</span> Characterization of nuclide stability

In nuclear physics, the valley of stability is a characterization of the stability of nuclides to radioactivity based on their binding energy. Nuclides are composed of protons and neutrons. The shape of the valley refers to the profile of binding energy as a function of the numbers of neutrons and protons, with the lowest part of the valley corresponding to the region of most stable nuclei. The line of stable nuclides down the center of the valley of stability is known as the line of beta stability. The sides of the valley correspond to increasing instability to beta decay. The decay of a nuclide becomes more energetically favorable the further it is from the line of beta stability. The boundaries of the valley correspond to the nuclear drip lines, where nuclides become so unstable they emit single protons or single neutrons. Regions of instability within the valley at high atomic number also include radioactive decay by alpha radiation or spontaneous fission. The shape of the valley is roughly an elongated paraboloid corresponding to the nuclide binding energies as a function of neutron and atomic numbers.

<span class="mw-page-title-main">Mononuclidic element</span> Related to Periodic Table

A mononuclidic element or monotopic element is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide. This single nuclide will have a characteristic atomic mass. Thus, the element's natural isotopic abundance is dominated by one isotope that is either stable or very long-lived. There are 19 elements in the first category, and 2 in the second category. A list of the 21 mononuclidic elements is given at the end of this article.

<span class="mw-page-title-main">Neutron number</span> The number of neutrons in a nuclide

The neutron number is the number of neutrons in a nuclide.

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same chemical element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.

<span class="mw-page-title-main">Primordial nuclide</span> Nuclides predating the Earths formation (found on Earth)

In geochemistry, geophysics and nuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the solar system was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes. They are the stable nuclides plus the long-lived fraction of radionuclides surviving in the primordial solar nebula through planet accretion until the present; 286 such nuclides are known.

<span class="mw-page-title-main">Even and odd atomic nuclei</span> Nuclear physics classification method

In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model. This difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences for beta decay.

<span class="mw-page-title-main">Neutron–proton ratio</span> Ratio of neutrons to protons in an atomic nucleus

The neutron–proton ratio of an atomic nucleus is the ratio of its number of neutrons to its number of protons. Among stable nuclei and naturally occurring nuclei, this ratio generally increases with increasing atomic number. This is because electrical repulsive forces between protons scale with distance differently than strong nuclear force attractions. In particular, most pairs of protons in large nuclei are not far enough apart, such that electrical repulsion dominates over the strong nuclear force, and thus proton density in stable larger nuclei must be lower than in stable smaller nuclei where more pairs of protons have appreciable short-range nuclear force attractions.

References

  1. N. E. Holden, "Standard Atomic Weight Values for the Mononuclidic Elements - 2001," BNL-NCS-68362, Brookhaven National Laboratory (2001)
  2. Until 2003, 209Bi was thought to be in the first category. It was then found to have a half-life of 1019 years, about a billion times the age of the universe. See Bismuth