Mosaic evolution

Last updated

Mosaic evolution (or modular evolution) is the concept, mainly from palaeontology, that evolutionary change takes place in some body parts or systems without simultaneous changes in other parts. [1] Another definition is the "evolution of characters at various rates both within and between species". [2] 408 Its place in evolutionary theory comes under long-term trends or macroevolution. [2]

Contents

Background

In the neodarwinist theory of evolution, as postulated by Stephen Jay Gould, there is room for differing development, when a life form matures earlier or later, in shape and size. This is due to allomorphism. Organs develop at differing rhythms, as a creature grows and matures. Thus a "heterochronic clock" has three variants: 1) time, as a straight line; 2) general size, as a curved line; 3) shape, as another curved line. [3]

When a creature is advanced in size, it may develop at a smaller rate. Alternatively, it may maintain its original size or, if delayed, it may result in a larger sized creature. That is insufficient to understand heterochronic mechanism. Size must be combined with shape, so a creature may retain paedomorphic features if advanced in shape or present recapitulatory appearance when retarded in shape. These names are not very indicative, as past theories of development were very confusing. [3]

A creature in its ontogeny may combine heterochronic features in six vectors, although Gould considers that there is some binding with growth and sexual maturation. A creature may, for example, present some neotenic features and retarded development, resulting in new features derived from an original creature only by regulatory genes. Most novel human features (compared to closely related apes) were of this nature, not implying major change in structural genes, as was classically considered. [3]

Taxonomic range

It is not claimed that this pattern is universal, but there is now a wide range of examples from many different taxa, including:

Mosaic evolution (in hominin)

Although mosaic evolution is usually seen in terms of animals such as Darwin's finches, it can also be seen in the evolutionary process of hominin. To help further explain the meaning of mosaic evolution in hominin, mosaicism will get broken down into three subgroups. Group 1 includes related species developing independently, of which carry deep variability in their own morphological structure. Examples of this can be seen within comparisons of A. sediba , H. naledi , and H. floresiensis . Group 2 relies on the different environmental impacts on the changes of a species. An example of this is the variability of bipedalism forming independently within all related species of hominin. Lastly, Group 3 involves the presence of behavior such as the human vernacular. Language is a mosaic composite of various elements working together for one specific attribute, and this is not a single trait an offspring can inherit directly. [14] In addition, it has been shown that an increase in social interactions corresponds to the evolution of human intelligence or in other words, an increase in brain size. This is provided and shown by Robin Dunbar's social brain hypothesis. [15] Moreover, this can be used as a level of transition in human evolution; of which also includes dental shapes. [16]

Brain size has shown intra-specific mosaic variability within its own development, as these differences are a result of environmental limitations. In other words, independent variability of brain structure is seen more when brain regions are unassociated from one another, ultimately, giving rise to perceptible features. When comparing current brain size and capacity between humans and chimpanzees, the ability to predict the evolutionary change between their ancestors was incredibly insightful. This granted the discovery that "local spatial interactions" were the main effect of the limitations. [17] Furthermore, alongside the cranial capacity and structure of the brain, dental shape provides another example of mosaicism.

Using fossil record, dental shape showed mosaic evolution within the canine teeth found in early hominin. Reduction of canine sizes are seen as an authentication mark of human ancestor evolution. However, A. anamensis , discovered in Kenya, was found to have the largest mandibular canine root as part of Australopithecus evolution. This alters the authentication mark because the dimorphism between root and crown reduction has not been assessed. Although canine reduction has probably occurred prior to the evolution of Australopithecus, "changes in canine shape, in both crowns and roots, occurred in a mosaic fashion throughout the A. anamensis–afarensis lineage". [18]

See also

Related Research Articles

<i>Ardipithecus</i> Extinct genus of hominins

Ardipithecus is a genus of an extinct hominine that lived during the Late Miocene and Early Pliocene epochs in the Afar Depression, Ethiopia. Originally described as one of the earliest ancestors of humans after they diverged from the chimpanzees, the relation of this genus to human ancestors and whether it is a hominin is now a matter of debate. Two fossil species are described in the literature: A. ramidus, which lived about 4.4 million years ago during the early Pliocene, and A. kadabba, dated to approximately 5.6 million years ago. Initial behavioral analysis indicated that Ardipithecus could be very similar to chimpanzees, however more recent analysis based on canine size and lack of canine sexual dimorphism indicates that Ardipithecus was characterised by reduced aggression, and that they more closely resemble bonobos.

<i>Archaeopteryx</i> Genus of early bird-like dinosaur

Archaeopteryx, sometimes referred to by its German name, "Urvogel", is a genus of bird-like dinosaurs. The name derives from the ancient Greek ἀρχαῖος (archaīos), meaning "ancient", and πτέρυξ (ptéryx), meaning "feather" or "wing". Between the late 19th century and the early 21st century, Archaeopteryx was generally accepted by palaeontologists and popular reference books as the oldest known bird. Older potential avialans have since been identified, including Anchiornis, Xiaotingia, and Aurornis.

Bipedalism Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where an organism moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking, running, and hopping.

Human evolution Evolutionary process leading to anatomically modern humans

Human evolution is the evolutionary process within the history of primates that led to the emergence of Homo sapiens as a distinct species of the hominid family, which includes the great apes. This process involved the gradual development of traits such as human bipedalism and language, as well as interbreeding with other hominins, which indicate that human evolution was not linear but a web.

Homininae Subfamily of mammals

Homininae, also called "African hominids" or "African apes", is a subfamily of Hominidae. It includes two tribes, with their extant as well as extinct species: 1) the tribe Hominini ―and 2) the tribe Gorillini (gorillas). Alternatively, the genus Pan is sometimes considered to belong to its own third tribe, Panini. Homininae comprises all hominids that arose after orangutans split from the line of great apes. The Homininae cladogram has three main branches, which lead to gorillas, and to humans and chimpanzees via the tribe Hominini and subtribes Hominina and Panina. There are two living species of Panina and two living species of gorillas, but only one extant human species. Traces of extinct Homo species, including Homo floresiensis have been found with dates as recent as 40,000 years ago. Organisms in this subfamily are described as hominine or hominines.

<i>Kenyanthropus</i> Oldest-known tool-making hominin

Kenyanthropus is a hominin genus identified from the Lomekwi site by Lake Turkana, Kenya, dated to 3.3 to 3.2 million years ago during the Middle Pliocene. It contains one species, K. platyops, but may also include the 2 million year old Homo rudolfensis, or K. rudolfensis. Before its naming in 2001, Australopithecus afarensis was widely regarded as the only australopithecine to exist during the Middle Pliocene, but Kenyanthropus evinces a greater diversity than once acknowledged. Kenyanthropus is most recognisable by an unusually flat face and small teeth for such an early hominin, with values on the extremes or beyond the range of variation for australopithecines in regard to these features. Multiple australopithecine species may have coexisted by foraging for different food items, which may be reason why these apes anatomically differ in features related to chewing.

<i>Australopithecus</i> Genus of hominin ancestral to modern humans

Australopithecus is a genus of early hominins that existed in Africa during the Late Pliocene and Early Pleistocene. The genus Homo emerged within Australopithecus, as sister to e.g. Australopithecus sediba. Also the genera Paranthropus and Kenyanthropus emerged within the Australopithecus. Australopithecus is a member of the subtribe Australopithecina, which sometimes also includes Ardipithecus, though the term "australopithecine" is sometimes used to refer only to members of Australopithecus. Species include A. garhi, A. africanus, A. sediba, A. afarensis, A. anamensis, A. bahrelghazali and A. deyiremeda. Debate exists as to whether some Australopithecus species should be reclassified into new genera, or if Paranthropus and Kenyanthropus are synonymous with Australopithecus, in part because of the taxonomic inconsistency.

<i>Sahelanthropus</i> Extinct hominid from Miocene Africa

Sahelanthropus tchadensis is an extinct species of the Homininae dated to about 7 million years ago, during the Miocene epoch. The species, and its genus Sahelanthropus, was announced in 2002, based mainly on a partial cranium, nicknamed Toumaï, discovered in northern Chad.

Transitional fossil Type of fossilized remains

A transitional fossil is any fossilized remains of a life form that exhibits traits common to both an ancestral group and its derived descendant group. This is especially important where the descendant group is sharply differentiated by gross anatomy and mode of living from the ancestral group. These fossils serve as a reminder that taxonomic divisions are human constructs that have been imposed in hindsight on a continuum of variation. Because of the incompleteness of the fossil record, there is usually no way to know exactly how close a transitional fossil is to the point of divergence. Therefore, it cannot be assumed that transitional fossils are direct ancestors of more recent groups, though they are frequently used as models for such ancestors.

<i>Australopithecus afarensis</i> Extinct hominid from the Pliocene of East Africa

Australopithecus afarensis is an extinct species of australopithecine which lived from about 3.9–2.9 million years ago (mya) in the Pliocene of East Africa. The first fossils were discovered in the 1930s, but major fossil finds would not take place until the 1970s. From 1972 to 1977, the International Afar Research Expedition—led by anthropologists Maurice Taieb, Donald Johanson and Yves Coppens—unearthed several hundreds of hominin specimens in Hadar, Ethiopia, the most significant being the exceedingly well-preserved skeleton AL 288-1 ("Lucy") and the site AL 333. Beginning in 1974, Mary Leakey led an expedition into Laetoli, Tanzania, and notably recovered fossil trackways. In 1978, the species was first described, but this was followed by arguments for splitting the wealth of specimens into different species given the wide range of variation which had been attributed to sexual dimorphism. A. afarensis probably descended from A. anamensis and is hypothesised to have given rise to Homo, though the latter is debated.

Paleoanthropology or paleo-anthropology is a branch of paleontology and anthropology which seeks to understand the early development of anatomically modern humans, a process known as hominization, through the reconstruction of evolutionary kinship lines within the family Hominidae, working from biological evidence and cultural evidence.

Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when there is branching or splitting, leading to two or more lineages and resulting in separate species. Anagenesis does not always lead to the formation of a new species from an ancestral species. When speciation does occur as different lineages branch off and cease to interbreed, a core group may continue to be defined as the original species. The evolution of this group, without extinction or species selection, is anagenesis.

<i>Australopithecus africanus</i> Extinct hominid from South Africa

Australopithecus africanus is an extinct species of australopithecine which lived between about 3.3 and 2.1 million years ago in the late Pliocene to Early Pleistocene of South Africa. The species has been recovered from Taung, Sterkfontein, Makapansgat, and Gladysvale. The first specimen, the Taung child, was described by anatomist Raymond Dart in 1924, and was the first early hominin found. However, its closer relations to humans than to other apes would not become widely accepted until the middle of the century because most had believed humans evolved outside of Africa. It is unclear how A. africanus relates to other hominins, being variously placed as ancestral to Homo and Paranthropus, to just Paranthropus, or to just P. robustus. The specimen "Little Foot" is the most completely preserved early hominin, with 90% of the skeleton intact, and the oldest South African australopith. However, it is controversially suggested that it and similar specimens be split off into "A. prometheus".

<i>Australopithecus anamensis</i> Extinct hominin from Pliocene east Africa

Australopithecus anamensis is a hominin species that lived approximately between 4.2 and 3.8 million years ago and is the oldest known Australopithecus species, living during the Plio-Pleistocene era.

Australopithecine Extinct subtribe of the Hominini tribe, and members of the human clade

Australopithecina or Hominina is a subtribe in the tribe Hominini. The members of the subtribe are generally Australopithecus, and it typically includes the earlier Ardipithecus, Orrorin, Sahelanthropus, and Graecopithecus. All these closely related species are now sometimes collectively termed australopiths or homininians. They are the extinct, close relatives of humans and, with the extant genus Homo, comprise the human clade. Members of the human clade, i.e. the Hominini after the split from the chimpanzees, are now called Hominina.

Evolution of birds Derivation of birds from a dinosaur precursor, and the adaptive radiation of bird species

The evolution of birds began in the Jurassic Period, with the earliest birds derived from a clade of theropod dinosaurs named Paraves. Birds are categorized as a biological class, Aves. For more than a century, the small theropod dinosaur Archaeopteryx lithographica from the Late Jurassic period was considered to have been the earliest bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked reptile clade, the Archosauria. Four distinct lineages of bird survived the Cretaceous–Paleogene extinction event 66 million years ago, giving rise to ostriches and relatives (Paleognathae), ducks and relatives (Anseriformes), ground-living fowl (Galliformes), and "modern birds" (Neoaves).

<i>Ardipithecus ramidus</i> Extinct hominin from Early Pliocene Ethiopia

Ardipithecus ramidus is a species of australopithecine from the Afar region of Early Pliocene Ethiopia 4.4 million years ago (mya). A. ramidus, unlike modern hominids, has adaptations for both walking on two legs (bipedality) and life in the trees (arboreality). However, it would not have been as efficient at bipedality as humans, nor at arboreality as non-human great apes. Its discovery, along with Miocene apes, has reworked academic understanding of the chimpanzee-human last common ancestor from appearing much like modern day chimpanzees, orangutans and gorillas to being a creature without a modern anatomical cognate.

The evolution of human bipedalism, which began in primates approximately four million years ago, or as early as seven million years ago with Sahelanthropus, or approximately twelve million years ago with Danuvius guggenmosi, has led to morphological alterations to the human skeleton including changes to the arrangement, shape, and size of the bones of the foot, hip, knee, leg, and the vertebral column. These changes allowed for the upright gait to be overall more energy efficient in comparison to quadrupeds. The evolutionary factors that produced these changes have been the subject of several theories that correspond with environmental changes on a global scale.

Evolution of the brain Overview of the evolution of the brain

There is so much to be discovered about the evolution of the brain and the principles that govern it. While much has been discovered, not everything currently known is well understood. The evolution of the brain has appeared to exhibit diverging adaptations within taxonomic classes such as mammalia and more vastly diverse adaptations across other taxonomic classes. Brain to body size scales allometrically. This means as body size changes, so do other physiological, anatomical, and biochemical constructs connecting the brain to the body. Small bodied mammals have relatively large brains compared to their bodies whereas large mammals have smaller brain to body ratios. If brain weight is plotted against body weight for primates, the regression line of the sample points can indicate the brain power of a primate species. Lemurs for example fall below this line which means that for a primate of equivalent size, we would expect a larger brain size. Humans lie well above the line indicating that humans are more encephalized than lemurs. In fact, humans are more encephalized compared to all other primates. This means that human brains have exhibited a larger evolutionary increase in it complexity relative to its size. Some of these evolutionary changes have been found to be linked to multiple genetic factors such as, proteins and other organelles.

The Middle Awash Project is an international research expedition conducted in the Afar region of Ethiopia with the goal of determining the origins of humanity. The project has the approval of the Ethiopian Culture Ministry and a strong commitment to developing Ethiopian archaeology, paleontology and geology research infrastructure. This project has discovered over 260 fossil specimens and over 17,000 vertebrate fossil specimens to date ranging from 200,000 to 6,000,000 years in age. Researchers have discovered the remains of four hominin species, the earliest subspecies of homo sapiens as well as stone tools. All specimens are permanently held at the National Museum of Ethiopia, where the project’s laboratory work is conducted year round.

References

  1. King, R.C.; Stansfield, W.D.; Mulligan, P.K. 2006. A dictionary of genetics. 7th ed, Oxford University Press. p286 ISBN   0-19-530761-5
  2. 1 2 Carroll R.L. 1997. Patterns and processes of vertebrate evolution. Cambridge University Press. ISBN   0-521-47809-X
  3. 1 2 3 Gould, S.J. 1977. Ontogeny and phylogeny. Belknap Press of Harvard University Press.
  4. Stanley, S.M. 1979. Macroevolution: pattern and process. Freeman, San Francisco. p154 ISBN   0-7167-1092-7
  5. Jurmain, Robert. et al. 2008. Introduction to Physical Anthropology. Thompson Wadsworth. p479
  6. Foster, Michael and Lankester, E. Ray (eds )1898–1903. The scientific memoirs of Thomas Henry Huxley. 4 vols and supplement, Macmillan, London ISBN   1-4326-4011-9
  7. Barnovsky, A.D. 1993. Mosaic evolution at population level in Microtus pennsylvanicus. In Morphological changes in Quaternary mammals of North America. ed R.A. Martin & A.D. Barnovsky. Cambridge University Press. pp2459
  8. Lü, J.; Unwin, D.M.; Jin, X.; Liu, Y.; Ji, Q. (2010). "Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull". Proceedings of the Royal Society B. 277 (1680): 383–389. doi:10.1098/rspb.2009.1603. PMC   2842655 . PMID   19828548.
  9. MacFadden, Bruce J. (2003) [1999]. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge: Cambridge University Press. ISBN   0-521-47708-5 . Retrieved 6 June 2010.
  10. Maynard Smith, John 1993. The theory of evolution. Cambridge University Press. 3rd ed + new Introduction. pp285290 ISBN   0-521-45128-0
  11. Kermack, D.M.; Kermack, K.A. (1984). The evolution of mammalian characters. Croom Helm. ISBN   0-7099-1534-9.
  12. Kemp T.S. 2005. The origin and evolution of mammals. Oxford University Press, Oxford. ISBN   0-19-850761-5
  13. Kielan-Jaworowska, Zofia; Richard L. Cifelli and Zhe-Xi Luo 2004. Mammals from the Age of Dinosaurs: origins, evolution, and structure, Columbia University Press, New York. ISBN   0-231-11918-6
  14. Parravicini, Andrea; Pievani, Telmo (2019). "Mosaic evolution in hominin phylogeny: meanings, implications, and explanations". Journal of Anthropological Sciences. 96 (97): 45–68. doi:10.4436/JASS.97001. ISSN   1827-4765. PMID   31241465.
  15. Dunbar, R.I.M. (2009). "The social brain hypothesis and its implications for social evolution". Annals of Human Biology. 36 (5): 562–572. doi:10.1080/03014460902960289. ISSN   0301-4460. PMID   19575315. S2CID   21495059.
  16. Foley, Robert A. (2016-07-05). "Mosaic evolution and the pattern of transitions in the hominin lineage". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1698): 20150244. doi:10.1098/rstb.2015.0244. ISSN   0962-8436. PMC   4920300 . PMID   27298474.
  17. Gómez-Robles, Aida; Hopkins, William D.; Sherwood, Chet C. (2014). "Modular structure facilitates mosaic evolution of the brain in chimpanzees and humans". Nature Communications. 5 (1): 4469. Bibcode:2014NatCo...5.4469G. doi:10.1038/ncomms5469. ISSN   2041-1723. PMC   4144426 . PMID   25047085.
  18. Manthi, Fredrick K.; Plavcan, J. Michael; Ward, Carol V. (2012-03-01). "New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins". South African Journal of Science. 108 (3/4): 9 pages. doi: 10.4102/sajs.v108i3/4.724 . ISSN   1996-7489.