Evolution of brachiopods

Last updated
The Devonian brachiopod Tylothyris from the Milwaukee Formation, Milwaukee County, Wisconsin Tylothyris.jpg
The Devonian brachiopod Tylothyris from the Milwaukee Formation, Milwaukee County, Wisconsin

The origin of the brachiopods is uncertain; they either arose from reduction of a multi-plated tubular organism, or from the folding of a slug-like organism with a protective shell on either end. Since their Cambrian origin, the phylum rose to a Palaeozoic dominance, but dwindled during the Mesozoic.

Contents

Origins

Brachiopod fold hypothesis

The long-standing hypothesis of brachiopod origins, which has recently come under fire, [1] suggests that the brachiopods arose by the folding of a Halkieria -like organism, which bore two protective shells at either end of a scaled body. [2] The tannuolinids were thought to represent an intermediate form, although the fact that they do not, as thought, possess a scleritome means that this is now considered unlikely. [3] Under this hypothesis, the Phoronid worms share a similar evolutionary history; molecular data also appear to indicate their membership of Brachiopoda. [4]

Under the Brachiopod Fold Hypothesis, the "dorsal" and "ventral" valves would in fact represent an anterior and posterior shell. This would make the axes of symmetry consistent with that of other bilaterian phyla [4] and appears to be consistent with the embryological development, in which the body axis folds to bring the shells from the dorsal surface to their mature position. [4] Further support has been identified from the gene expression pattern during development, [4] but on balance, developmental evidence speaks against the BFH. [5]

More recent developmental studies have cast doubt on the BFH. Most significantly, the dorsal and ventral valves have significantly different origins; the dorsal (branchial) valve is secreted by dorsal epithelia, whereas the ventral (pedicle) valve corresponds to the cuticle of the pedicle, which becomes mineralized during development. [6] Moreover, the dorsal and ventral valves of Lingula do not display the Hox gene expression patterns that would be expected if they were ancestrally 'anterior' and 'posterior'. [7]

Tommotiids

The 'tommotiids' are an informal group of animals thought to be lophotrochozoans. Their remains are usually found as microfossils, entombed in carbonate as phosphatic sclerites(armor plates). While the sclerites are disarticulated in their fossil state, in life a huge number of them would have articulated and attached onto a soft-bodied animal. The taxonomical affinities of such animal have long been uncertain - they had been compared to other fossils known from armor plates/scales, such as Halkieria and the machaeridian worms. [8]

Continuing research in the current century has brought on a new exciting perspective on the affinities of tommotiids: they are now being regarded as stem-group brachiopods. One crucial fossil linking the tommotiids with brachiopods is Micrina . Analysis on the microscopic inner structure of the phosphatic shell has shown similarities to the organophosphatic brachiopods, one of them being tubes - that must have housed setae in life - perforating the shell layers. Setigerous tubes have also been found in early brachiopods, like the Paterinates for example. [9] A later publication (Holmer et al. 2008) asserted that Micrina was a bivalved animal not unlike a brachiopod, having only two armor plates in life. Tommotiid sclerites can be classified by their shape, and most had two types of them: the sellate sclerite and the mitral sclerite. In this model Micrina had one of each. The sellate and mitral sclerites of tommotiids would end up becoming dorsal(brachial) and ventral(pedicle) valves respectively. [10]

Another crucial find would be the discovery of (partially) articulated tommotiids. The first of these is Eccentrotheca , and the second Paterimitra . Unlike the traditional view of them being slug-like animals comparable to Halkieria, the articulated exoskeleton suggest that they were sessile filter feeders, [1] [11] just like the brachiopods and their sister-group phoronids. Their shell microstructure, again, show similarity to the Paterinate brachiopods, especially in their primary mineralised layer. [12]

Appearance of the brachiopod crown-group

The earliest unequivocal brachiopod fossils appeared in the early Cambrian Period. [13] [14] The oldest known brachiopod is Aldanotreta sunnaginensis from the lowest Tommotian Stage, early Cambrian of the Siberia was confidently identified as a paterinid linguliforms.

The question of Paterinata

The brachiopod class Paterinata is an organophosphatic-shelled group that includes some of the oldest brachiopods known. They are usually considered as members of Linguliformea, being sister-groups with the similarly organophosphatic lingulates. However, paterinates possess a number of traits that resemble the 'articulate' brachiopods more than lingulates. Their adductor muscle scars are oriented postero-medially like the rhynchonelliforms. They have a strophic(straight) hinge line, which resemble early articulate groups like the orthids. Their mantle canal system houses gonads(like the craniiforms) and have exclusively marginal vascula terminalia. [15] This mosaic of traits lead to a repeated suggestion of the possibility that paterinates [16] [15] (or at least a few of them [13] ) could be very early diverging members separate from the lingulates. Their shell microstructure also seems to be closer to the stem-brachiopod tommotiids, [12] though this is something that was brought up later down the line.

Evolutionary history

Palaeozoic dominance

Brachiopods are extremely common fossils throughout the Palaeozoic. During the Ordovician and Silurian periods, brachiopods became adapted to life in most marine environments and became particularly numerous in shallow water habitats, in some cases forming whole banks in much the same way as bivalves (such as mussels) do today. In some places, large sections of limestone strata and reef deposits are composed largely of their shells.

The major shift came with the Permian extinction, as a result of the Mesozoic marine revolution. Before the extinction event, brachiopods were more numerous and diverse than bivalve mollusks. Afterwards, in the Mesozoic, their diversity and numbers were drastically reduced and they were largely replaced by bivalve molluscs. Molluscs continue to dominate today, and the remaining orders of brachiopods survive largely in fringe environments.

Mesozoic decline

Throughout their long geological history, the brachiopods have gone through several major proliferations and diversifications, and have also suffered from major extinctions as well.

It has been suggested that the slow decline of the brachiopods over the last 100 million years or so is a direct result of the rise in diversity of filter-feeding bivalves, which have ousted the brachiopods from their former habitats; however, the bivalves have undergone a steady rise in diversity from the mid-Paleozoic onwards, and their abundance is unrelated to that of the brachiopods; further, many bivalves occupy niches (e.g. burrowing) which brachiopods never inhabited. [17]

Alternative possibilities for their demise include the increasing disturbance of sediments by roving deposit feeders (including many burrowing bivalves); the increased intensity and variety of shell-crushing predation; or even chance demise – they were hard hit in the End-Permian extinction and may simply never have recovered.

See also

Related Research Articles

<span class="mw-page-title-main">Sclerite</span> Hardened body part

A sclerite is a hardened body part. In various branches of biology the term is applied to various structures, but not as a rule to vertebrate anatomical features such as bones and teeth. Instead it refers most commonly to the hardened parts of arthropod exoskeletons and the internal spicules of invertebrates such as certain sponges and soft corals. In paleontology, a scleritome is the complete set of sclerites of an organism, often all that is known from fossil invertebrates.

<span class="mw-page-title-main">Halkieriid</span> Family of incertae sedis

The halkieriids are a group of fossil organisms from the Lower to Middle Cambrian. Their eponymous genus is Halkieria, which has been found on almost every continent in Lower to Mid Cambrian deposits, forming a large component of the small shelly fossil assemblages. The best known species is Halkieria evangelista, from the North Greenland Sirius Passet Lagerstätte, in which complete specimens were collected on an expedition in 1989. The fossils were described by Simon Conway Morris and John Peel in a short paper in 1990 in the journal Nature. Later a more thorough description was undertaken in 1995 in the journal Philosophical Transactions of the Royal Society of London and wider evolutionary implications were posed.

The Obolellata are a class of Rhynchonelliform brachiopods with two orders, Obolellida and Naukatida. They are essentially restricted to the lower-middle Cambrian.

<span class="mw-page-title-main">Halwaxiida</span> Proposed clade of extinct Lophotrochozoa

Halwaxiida or halwaxiids is a proposed clade equivalent to the older orders Sachitida He 1980 and Thambetolepidea Jell 1981, loosely uniting scale-bearing Cambrian animals, which may lie in the stem group to molluscs or lophotrochozoa. Some palaeontologists question the validity of the Halwaxiida clade.

<span class="mw-page-title-main">Strophomenida</span> Extinct order of brachiopods

Strophomenida is an extinct order of articulate brachiopods which lived from the lower Ordovician period to the mid Carboniferous period. Strophomenida is part of the extinct class Strophomenata, and was the largest known order of brachiopods, encompassing over 400 genera. Some of the largest and heaviest known brachiopod species belong to this class. Strophomenids were among the most diverse and abundant brachiopods during the Ordovician, but their diversity was strongly impacted at the Late Ordovician mass extinction. Survivors rediversified into new morphologies in the Silurian, only to be impacted once again at the Late Devonian mass extinction. However, they still survived till the mid Carboniferous.

The small shelly fauna, small shelly fossils (SSF), or early skeletal fossils (ESF) are mineralized fossils, many only a few millimetres long, with a nearly continuous record from the latest stages of the Ediacaran to the end of the Early Cambrian Period. They are very diverse, and there is no formal definition of "small shelly fauna" or "small shelly fossils". Almost all are from earlier rocks than more familiar fossils such as trilobites. Since most SSFs were preserved by being covered quickly with phosphate and this method of preservation is mainly limited to the late Ediacaran and early Cambrian periods, the animals that made them may actually have arisen earlier and persisted after this time span.

<span class="mw-page-title-main">Brachiopod</span> Phylum of marine animals also known as lamp shells

Brachiopods, phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

<span class="mw-page-title-main">Tommotiid</span> Extinct order of brachiopods

Tommotiids are an extinct group of Cambrian invertebrates thought to be early lophophorates.

Stenothecoida is a taxon of bivalved fossils from the Early to middle Cambrian period. They look a bit like brachiopods or bivalve molluscs.

<span class="mw-page-title-main">Rhynchonelliformea</span> Subphylum of brachiopods

Rhynchonelliformea is a major subphylum and clade of brachiopods. It is roughly equivalent to the former class Articulata, which was used previously in brachiopod taxonomy up until the 1990s. These so-called articulated brachiopods have many anatomical differences relative to "inarticulate" brachiopods of the subphyla Linguliformea and Craniformea. Articulates have hard calcium carbonate shells with tongue-and-groove hinge articulations and separate sets of simple opening and closing muscles.

<i>Eccentrotheca</i> Extinct genus of marine organisms

Eccentrotheca is a genus of "tommotiid" known from Cambrian deposits. Its sclerites form rings that are stacked to produce a widening-upwards conical scleritome. Individual plates have been homologized with the valves of brachiopods, and a relationship with the phoronids is also likely at a stem-group level. Its pointed end terminated in a stub that probably fastened it to a hard sea floor; its open end has been interpreted as a filter-feeding aperture.

Mickwitziids are a Cambrian group of shelly fossils with originally phosphatic valves, belonging to the Brachiopod stem group, and exemplified by the genus Mickwitzia – the other genera are Heliomedusa and Setatella. The family Mickwitziidae is conceivably paraphyletic with respect to certain crown-group brachiopods.

<span class="mw-page-title-main">Paterinata</span> Extinct class of marine lamp shells

Paterinata is an extinct class of linguliform brachiopods which lived from the lower Cambrian ("Tommotian") to the Upper Ordovician (Hirnantian). It contains the single order Paterinida and the subfamily Paterinoidea. Despite being some of the earliest brachiopods to appear in the fossil record, paterinides stayed as a relatively subdued and low-diversity group even as other brachiopods diversified later in the Cambrian and Ordovician. Paterinides are notable for their high degree of convergent evolution with rhynchonelliform (articulate) brachiopods, which have a similar set of muscles and hinge-adjacent structures.

<i>Argyrotheca</i>

Argyrotheca is a genus of very small to minute lampshells. All species share a large pedicel opening, one ridge on the inside of the pedunculate valve, pits in a diamond pattern on the inside of both valves, and without radial ridges that end in tubercles. It occurs in depths between 6 and 1300 m. It is known since the latest Cretaceous.

Tannuolina is a genus of tommotiid, belonging to the brachiopod stem lineage.

<span class="mw-page-title-main">Camenellan</span> Extinct informal group of invertebrates

The camenellans, consisting of the genera Camenalla, Dailyatia, Kennardia, Kelanella, Wufengella and Lapworthella, are a group of Tommotiid invertebrates from the Cambrian period, reconstructed as sister to all others. They are primarily known from isolated sclerites, but are believed to have a scleritomous, Halkieria-like construction. This was confirmed by the discovery of Wufengella, known from articulated remains, which showed camenellans to be mobile, worm-like animals.

Micrina is an extinct genus of tommotiids with affinities to brachiopods.

<span class="mw-page-title-main">Siphonotretida</span> Extinct order of marine lamp shells

Siphonotretida is an extinct order of linguliform brachiopods in the class Lingulata. The order is equivalent to the sole superfamily Siphonotretoidea, itself containing the sole family Siphonotretidae. Siphonotretoids were originally named as a superfamily of Acrotretida, before being raised to their own order.

<span class="mw-page-title-main">Kutorginata</span> Extinct genus of shelled animals

Kutorginates (Kutorginata) are an extinct class of early rhynchonelliform ("articulate") brachiopods. The class contains only a single order, Kutorginida (kutorginides). Kutorginides were among the earliest rhynchonelliforms, restricted to the lower-middle part of the Cambrian Period.

<i>Wufengella</i> Extinct genus of invertebrates

Wufengella is a genus of extinct camenellan "tommotiid" that lived during the Early Cambrian. Described in 2022, the only species Wufengella bengtsonii was discovered from the Maotianshan Shales of Chiungchussu (Qiongzhusi) Formation in Yunnan, China. The fossil indicates that the animal was an armoured worm that close to the common ancestry of the phyla Phonorida, Brachiozoa and Bryozoa, which are collectively grouped into a clade called Lophophorata.

References

  1. 1 2 Skovsted, C. B.; Holmer, E.; Larsson, M.; Hogstrom, E.; Brock, A.; Topper, P.; Balthasar, U.; Stolk, P.; Paterson, R. (May 2009). "The scleritome of Paterimitra: an Early Cambrian stem group brachiopod from South Australia". Proceedings of the Royal Society B: Biological Sciences. 276 (1662): 1651–1656. doi:10.1098/rspb.2008.1655. ISSN   0962-8452. PMC   2660981 . PMID   19203919.
  2. Sigwart, J. D.; Sutton, M. D. (Oct 2007). "Deep molluscan phylogeny: synthesis of palaeontological and neontological data". Proceedings of the Royal Society B: Biological Sciences. 274 (1624): 2413–2419. doi:10.1098/rspb.2007.0701. PMC   2274978 . PMID   17652065. For a summary, see "The Mollusca". University of California Museum of Paleontology. Retrieved 2 October 2008.
  3. G. Giribet C. W. Dunn G. D. Edgecombe A. Hejnol M. Q. Martindale G. W. Rouse. "Assembling the spiralian tree of life" (PDF). In M. J. Telford; D. T. J. Littlewood (eds.). Animal Evolution — Genomes, Fossils, and Trees. pp. 52–64.
  4. 1 2 3 4 Cohen, B. L.; Holmer, L. E.; Luter, C. (2003). "The brachiopod fold: a neglected body plan hypothesis" (PDF). Palaeontology. 46: 59–65. doi: 10.1111/1475-4983.00287 .
  5. Altenburger, Andreas; Martinez, Pedro; Budd, Graham E.; Holmer, Lars E. (2017). "Gene Expression Patterns in Brachiopod Larvae Refute the "Brachiopod-Fold" Hypothesis". Frontiers in Cell and Developmental Biology. 5: 74. doi: 10.3389/fcell.2017.00074 . PMC   5572269 . PMID   28879180.
  6. Altenburger, A.; Wanninger, A.; Holmer, L. E. (2013). "Metamorphosis in Craniiformea revisited: Novocrania anomala shows delayed development of the ventral valve". Zoomorphology. 132 (4): 379. doi:10.1007/s00435-013-0194-3. S2CID   16785860.
  7. Luo, Yi-Jyun; Kanda, Miyuki; Koyanagi, Ryo; Hisata, Kanako; Akiyama, Tadashi; Sakamoto, Hirotaka; Sakamoto, Tatsuya; Satoh, Noriyuki (2018). "Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads". Nature Ecology & Evolution. 2 (1): 141–151. doi: 10.1038/s41559-017-0389-y . PMID   29203924. (see Supplementary Information for discussion)
  8. Dzik, Jerzy (1986). "Turrilepadida and other Machaeridia". Malacologia. 52: 97–113.
  9. Williams, Alwyn; Holmer, Lars E. (2002). "Shell Structure And Inferred Growth, Functions And Affinities Of The Sclerites Of The Problematic Micrina". Palaeontology. 45 (5): 845–873. doi: 10.1111/1475-4983.00264 . ISSN   0031-0239.
  10. Holmer, Lars E; Skovsted, Christian B; Brock, Glenn A; Valentine, James L; Paterson, John R (2008-12-23). "The Early Cambrian tommotiid Micrina , a sessile bivalved stem group brachiopod". Biology Letters. 4 (6): 724–728. doi:10.1098/rsbl.2008.0277. ISSN   1744-9561. PMC   2614141 . PMID   18577500.
  11. Skovsted, C. B.; Brock, G. A.; Paterson, J. R.; Holmer, L. E.; Budd, G. E. (2008). "The scleritome of Eccentrotheca from the Lower Cambrian of South Australia: Lophophorate affinities and implications for tommotiid phylogeny". Geology. 36 (2): 171. Bibcode:2008Geo....36..171S. doi:10.1130/G24385A.1.
  12. 1 2 Balthasar, U.; Skovsted, C. B.; Holmer, L. E.; Brock, G. A. (2009-12-01). "Homologous skeletal secretion in tommotiids and brachiopods". Geology. 37 (12): 1143–1146. doi:10.1130/g30323a.1. ISSN   0091-7613.
  13. 1 2 Alwyn Williams; Leonid E. Popov; Lars E. Holmer; Maggie Cusack (1998). "The diversity and phylogeny of the paterinate Brachiopods" (PDF). Palaeontology. 41 (2): 241–262. Archived from the original (PDF) on 2011-07-16. Retrieved 2009-10-10.
  14. Valentine, James W. (2004). On the origin of phyla. Chicago: University of Chicago Press. p. 638. ISBN   978-0-226-84548-7.
  15. 1 2 Harper, David A. T.; Popov, Leonid E.; Holmer, Lars E. (September 2017). Smith, Andrew (ed.). "Brachiopods: origin and early history". Palaeontology. 60 (5): 609–631. doi: 10.1111/pala.12307 . ISSN   0031-0239.
  16. Rowell, Albert J. (1982). "The monophyletic origin of the Brachiopoda". Lethaia. 15 (4): 299–307. doi:10.1111/j.1502-3931.1982.tb01695.x. ISSN   0024-1164.
  17. Gould, S. J.; Calloway, C. B. (1 October 1980). "Clams and Brachiopods — Ships that Pass in the Night". Paleobiology. 6 (4): 383–396. doi:10.1017/s0094837300003572. ISSN   0094-8373. JSTOR   2400538.