Kin selection

Last updated

The co-operative behaviour of social insects like the honey bee can be explained by kin selection. Todd Huffman - Lattice (by).jpg
The co-operative behaviour of social insects like the honey bee can be explained by kin selection.

Kin selection is a process whereby natural selection favours a trait due to its positive effects on the reproductive success of an organism's relatives, even when at a cost to the organism's own survival and reproduction. [1] Kin selection can lead to the evolution of altruistic behaviour. It is related to inclusive fitness, which combines the number of offspring produced with the number an individual can ensure the production of by supporting others (weighted by the relatedness between individuals). A broader definition of kin selection includes selection acting on interactions between individuals who share a gene of interest even if the gene is not shared due to common ancestry. [1]

Contents

Charles Darwin discussed the concept of kin selection in his 1859 book, On the Origin of Species , where he reflected on the puzzle of sterile social insects, such as honey bees, which leave reproduction to their mothers, arguing that a selection benefit to related organisms (the same "stock") would allow the evolution of a trait that confers the benefit but destroys an individual at the same time. J.B.S. Haldane in 1955 briefly alluded to the principle in limited circumstances (Haldane famously joked that he would willingly die for two brothers or eight cousins), and R.A. Fisher mentioned a similar principle even more briefly in 1930. However, it was not until 1964 that W.D. Hamilton generalised the concept and developed it mathematically (resulting in Hamilton's rule) that it began to be widely accepted. The mathematical treatment was made more elegant in 1970 due to advances made by George R. Price. The term "kin selection" was first used by John Maynard Smith in 1964.

According to Hamilton's rule, kin selection causes genes to increase in frequency when the genetic relatedness of a recipient to an actor multiplied by the benefit to the recipient is greater than the reproductive cost to the actor. [2] [3] Hamilton proposed two mechanisms for kin selection. First, kin recognition allows individuals to be able to identify their relatives. Second, in viscous populations, populations in which the movement of organisms from their place of birth is relatively slow, local interactions tend to be among relatives by default. The viscous population mechanism makes kin selection and social cooperation possible in the absence of kin recognition. In this case, nurture kinship, the interaction between related individuals, simply as a result of living in each other's proximity, is sufficient for kin selection, given reasonable assumptions about population dispersal rates. Kin selection is not the same thing as group selection, where natural selection is believed to act on the group as a whole.

In humans, altruism is both more likely and on a larger scale with kin than with unrelated individuals; for example, humans give presents according to how closely related they are to the recipient. In other species, vervet monkeys use allomothering, where related females such as older sisters or grandmothers often care for young, according to their relatedness. The social shrimp Synalpheus regalis protects juveniles within highly related colonies.

Historical overview

Charles Darwin wrote that selection could be applied to the family as well as to the individual. Charles Darwin by Julia Margaret Cameron, c. 1868.jpg
Charles Darwin wrote that selection could be applied to the family as well as to the individual.

Charles Darwin was the first to discuss the concept of kin selection (without using that term). In On the Origin of Species, he wrote about the conundrum represented by altruistic sterile social insects that: [4]

This difficulty, though appearing insuperable, is lessened, or, as I believe, disappears, when it is remembered that selection may be applied to the family, as well as to the individual, and may thus gain the desired end. Breeders of cattle wish the flesh and fat to be well marbled together. An animal thus characterised has been slaughtered, but the breeder has gone with confidence to the same stock and has succeeded.

Darwin

In this passage "the family" and "stock" stand for a kin group. These passages and others by Darwin about kin selection are highlighted in D.J. Futuyma's textbook of reference Evolutionary Biology [5] and in E. O. Wilson's Sociobiology . [6]

Kin selection was briefly referred to by R.A. Fisher in 1930 [7] and J.B.S. Haldane in 1932 [8] and 1955. [9] J.B.S. Haldane grasped the basic quantities in kin selection, famously writing "I would lay down my life for two brothers or eight cousins". [10] Haldane's remark alluded to the fact that if an individual loses its life to save two siblings, four nephews, or eight cousins, it is a "fair deal" in evolutionary terms, as siblings are on average 50% identical by descent, nephews 25%, and cousins 12.5% (in a diploid population that is randomly mating and previously outbred). But Haldane also joked that he would truly die only to save more than a single identical twin of his or more than two full siblings. [11] [12] In 1955 he clarified: [13]

Let us suppose that you carry a rare gene that affects your behaviour so that you jump into a flooded river and save a child, but you have one chance in ten of being drowned, while I do not possess the gene, and stand on the bank and watch the child drown. If the child's your own child or your brother or sister, there is an even chance that this child will also have this gene, so five genes will be saved in children for one lost in an adult. If you save a grandchild or a nephew, the advantage is only two and a half to one. If you only save a first cousin, the effect is very slight. If you try to save your first cousin once removed the population is more likely to lose this valuable gene than to gain it. … It is clear that genes making for conduct of this kind would only have a chance of spreading in rather small populations when most of the children were fairly near relatives of the man who risked his life.

W. D. Hamilton, in 1963 [14] and especially in 1964 [2] [3] generalised the concept and developed it mathematically, showing that it holds for genes even when they are not rare, deriving Hamilton's rule and defining a new quantity known as an individual's inclusive fitness. He is widely credited as the founder of the field of social evolution. A more elegant mathematical treatment was made possible by George Price in 1970. [15]

The evolutionary biologist John Maynard Smith used the term "kin selection" in 1964. John Maynard Smith.jpg
The evolutionary biologist John Maynard Smith used the term "kin selection" in 1964.

John Maynard Smith may have coined the actual term "kin selection" in 1964: [16]

These processes I will call kin selection and group selection respectively. Kin selection has been discussed by Haldane and by Hamilton. … By kin selection I mean the evolution of characteristics which favour the survival of close relatives of the affected individual, by processes which do not require any discontinuities in the population breeding structure.

Kin selection causes changes in gene frequency across generations, driven by interactions between related individuals. This dynamic forms the conceptual basis of the theory of sociobiology. Some cases of evolution by natural selection can only be understood by considering how biological relatives influence each other's fitness. Under natural selection, a gene encoding a trait that enhances the fitness of each individual carrying it should increase in frequency within the population; and conversely, a gene that lowers the individual fitness of its carriers should be eliminated. However, a hypothetical gene that prompts behaviour which enhances the fitness of relatives but lowers that of the individual displaying the behaviour, may nonetheless increase in frequency, because relatives often carry the same gene. According to this principle, the enhanced fitness of relatives can at times more than compensate for the fitness loss incurred by the individuals displaying the behaviour, making kin selection possible. This is a special case of a more general model, "inclusive fitness". [17] This analysis has been challenged, [18] Wilson writing that "the foundations of the general theory of inclusive fitness based on the theory of kin selection have crumbled" [19] and that he now relies instead on the theory of eusociality and "gene-culture co-evolution" for the underlying mechanics of sociobiology. Inclusive fitness theory is still generally accepted however, as demonstrated by the publication of a rebuttal to Wilson's claims in Nature from over a hundred researchers. [20]

Kin selection is contrasted with group selection, according to which a genetic trait can become prevalent within a group because it benefits the group as a whole, regardless of any benefit to individual organisms. All known forms of group selection conform to the principle that an individual behaviour can be evolutionarily successful only if the genes responsible for this behaviour conform to Hamilton's Rule, and hence, on balance and in the aggregate, benefit from the behaviour. [21] [22]

Hamilton's rule

Formally, genes should increase in frequency when

where

r = the genetic relatedness of the recipient to the actor, often defined as the probability that a gene picked randomly from each at the same locus is identical by descent.
B = the additional reproductive benefit gained by the recipient of the altruistic act,
C = the reproductive cost to the individual performing the act.

This inequality is known as Hamilton's rule after W. D. Hamilton who in 1964 published the first formal quantitative treatment of kin selection. [2] [3]

The relatedness parameter (r) in Hamilton's rule was introduced in 1922 by Sewall Wright as a coefficient of relationship that gives the probability that at a random locus, the alleles there will be identical by descent. [23] Modern formulations of the rule use Alan Grafen's definition of relatedness based on the theory of linear regression. [24]

A 2014 review of many lines of evidence for Hamilton's rule found that its predictions were confirmed in a wide variety of social behaviours across a broad phylogenetic range of birds, mammals and insects, in each case comparing social and non-social taxa. [25] Among the experimental findings, a 2010 study used a wild population of red squirrels in Yukon, Canada. Surrogate mothers adopted related orphaned squirrel pups but not unrelated orphans. The cost of adoption was calculated by measuring a decrease in the survival probability of the entire litter after increasing the litter by one pup, while benefit was measured as the increased chance of survival of the orphan. The degree of relatedness of the orphan and surrogate mother for adoption to occur depended on the number of pups the surrogate mother already had in her nest, as this affected the cost of adoption. Females always adopted orphans when rB was greater than C, but never adopted when rB was less than C, supporting Hamilton's rule. [26] [note 1]

Mechanisms

Altruism occurs where the instigating individual suffers a fitness loss while the receiving individual experiences a fitness gain. The sacrifice of one individual to help another is an example. [27]

Hamilton outlined two ways in which kin selection altruism could be favoured:

The selective advantage which makes behaviour conditional in the right sense on the discrimination of factors which correlate with the relationship of the individual concerned is therefore obvious. It may be, for instance, that in respect of a certain social action performed towards neighbours indiscriminately, an individual is only just breaking even in terms of inclusive fitness. If he could learn to recognise those of his neighbours who really were close relatives and could devote his beneficial actions to them alone an advantage to inclusive fitness would at once appear. Thus a mutation causing such discriminatory behaviour itself benefits inclusive fitness and would be selected. In fact, the individual may not need to perform any discrimination so sophisticated as we suggest here; a difference in the generosity of his behaviour according to whether the situations evoking it were encountered near to, or far from, his own home might occasion an advantage of a similar kind. [2]

Kin recognition and the green beard effect

Kin recognition theory predicts a selective advantage for the bearers of a trait (like the fictitious 'green beard') behave altruistically towards others with the same trait. BeardGreen.jpg
Kin recognition theory predicts a selective advantage for the bearers of a trait (like the fictitious 'green beard') behave altruistically towards others with the same trait.

First, if individuals have the capacity to recognise kin and to discriminate (positively) on the basis of kinship, then the average relatedness of the recipients of altruism could be high enough for kin selection. Because of the facultative nature of this mechanism, kin recognition and discrimination were expected to be unimportant except among 'higher' forms of life. However, as molecular recognition mechanisms have been shown to operate in organisms such as slime moulds [28] kin recognition has much wider importance than previously recognised. Kin recognition may be selected for inbreeding avoidance, and little evidence indicates that 'innate' kin recognition plays a role in mediating altruism. A thought experiment on the kin recognition/discrimination distinction is the hypothetical 'green beard', where a gene for social behaviour is imagined also to cause a distinctive phenotype that can be recognised by other carriers of the gene. Due to conflicting genetic similarity in the rest of the genome, there should be selection pressure for green-beard altruistic sacrifices to be suppressed, making common ancestry the most likely form of inclusive fitness. [2] [29] This suppression is overcome if new phenotypes -other beard colours- are formed through mutation or introduced into the population from time to time. This proposed mechanism goes by the name of 'beard chromodynamics'. [30]

Viscous populations

Secondly, indiscriminate altruism may be favoured in "viscous" populations, those with low rates or short ranges of dispersal. Here, social partners are typically related, and so altruism can be selective advantageous without the need for kin recognition and kin discrimination faculties—spatial proximity, together with limited dispersal, ensures that social interactions are more often with related individuals. This suggests a rather general explanation for altruism. Directional selection always favours those with higher rates of fecundity within a certain population. Social individuals can often enhance the survival of their own kin by participating in and following the rules of their own group. [2]

Hamilton later modified his thinking to suggest that an innate ability to recognise actual genetic relatedness was unlikely to be the dominant mediating mechanism for kin altruism: [31]

But once again, we do not expect anything describable as an innate kin recognition adaptation, used for social behaviour other than mating, for the reasons already given in the hypothetical case of the trees.

Hamilton's later clarifications often go unnoticed. Stuart West and colleagues have countered the long-standing assumption that kin selection requires innate powers of kin recognition. [32] Another doubtful assumption is that social cooperation must be based on limited dispersal and shared developmental context. Such ideas have obscured the progress made in applying kin selection to species including humans, on the basis of cue-based mediation of social bonding and social behaviours. [33] [34]

Special cases

Eusociality

Ants are eusocial insects; the queen (large, centre) is reproductive, while the workers (small) and soldiers (medium size, with large jaws) are generally not. Pheidole2.jpg
Ants are eusocial insects; the queen (large, centre) is reproductive, while the workers (small) and soldiers (medium size, with large jaws) are generally not.

Eusociality (true sociality) occurs in social systems with three characteristics: an overlap in generations between parents and their offspring, cooperative brood care, and specialised castes of non-reproductive individuals. [35] The social insects provide good examples of organisms with what appear to be kin selected traits. The workers of some species are sterile, a trait that would not occur if individual selection was the only process at work. The relatedness coefficient r is abnormally high between the worker sisters in a colony of Hymenoptera due to haplodiploidy. Hamilton's rule is presumed to be satisfied because the benefits in fitness for the workers are believed to exceed the costs in terms of lost reproductive opportunity, though this has never been demonstrated empirically. Competing hypotheses have been offered to explain the evolution of social behaviour in such organisms. [18]

The eusocial shrimp Synalpheus regalis protects juveniles in the colony. By defending the young, the large defender shrimp can increase its inclusive fitness. Allozyme data demonstrated high relatedness within colonies, averaging 0.50. This means that colonies represent close kin groups, supporting the hypothesis of kin selection. [36]

Allomothering

Vervet monkeys behave in ways that imply kin selection. Vervet Monkeys (3448498958).jpg
Vervet monkeys behave in ways that imply kin selection.

Vervet monkeys utilise allomothering, parenting by group members other than the actual mother or father, where the allomother is typically an older female sibling or a grandmother. Individuals act aggressively toward other individuals that were aggressive toward their relatives. The behaviour implies kin selection between siblings, between mothers and offspring, and between grandparents and grandchildren. [37] [38]

In humans

Whether or not Hamilton's rule always applies, relatedness is often important for human altruism, in that humans are inclined to behave more altruistically toward kin than toward unrelated individuals. [39] Many people choose to live near relatives, exchange sizeable gifts with relatives, and favour relatives in wills in proportion to their relatedness. [39]

Experimental studies, interviews, and surveys

Interviews of several hundred women in Los Angeles showed that while non-kin friends were willing to help one another, their assistance was far more likely to be reciprocal. The largest amounts of non-reciprocal help, however, were reportedly provided by kin. Additionally, more closely related kin were considered more likely sources of assistance than distant kin. [40] Similarly, several surveys of American college students found that individuals were more likely to incur the cost of assisting kin when a high probability that relatedness and benefit would be greater than cost existed. Participants' feelings of helpfulness were stronger toward family members than non-kin. Additionally, participants were found to be most willing to help those individuals most closely related to them. Interpersonal relationships between kin in general were more supportive and less Machiavellian than those between non-kin. [41]

In one experiment, the longer participants (from both the UK and the South African Zulus) held a painful skiing position, the more money or food was presented to a given relative. Participants repeated the experiment for individuals of different relatedness (parents and siblings at r=.5, grandparents, nieces, and nephews at r=.25, etc.). The results showed that participants held the position for longer intervals the greater the degree of relatedness between themselves and those receiving the reward. [42]

Observational studies

A study of food-sharing practices on the West Caroline islets of Ifaluk determined that food-sharing was more common among people from the same islet, possibly because the degree of relatedness between inhabitants of the same islet would be higher than relatedness between inhabitants of different islets. When food was shared between islets, the distance the sharer was required to travel correlated with the relatedness of the recipient—a greater distance meant that the recipient needed to be a closer relative. The relatedness of the individual and the potential inclusive fitness benefit needed to outweigh the energy cost of transporting the food over distance. [43]

Humans may use the inheritance of material goods and wealth to maximise their inclusive fitness. By providing close kin with inherited wealth, an individual may improve his or her kin's reproductive opportunities and thus increase his or her own inclusive fitness even after death. A study of a thousand wills found that the beneficiaries who received the most inheritance were generally those most closely related to the will's writer. Distant kin received proportionally less inheritance, with the least amount of inheritance going to non-kin. [44]

A study of childcare practices among Canadian women found that respondents with children provide childcare reciprocally with non-kin. The cost of caring for non-kin was balanced by the benefit a woman received—having her own offspring cared for in return. However, respondents without children were significantly more likely to offer childcare to kin. For individuals without their own offspring, the inclusive fitness benefits of providing care to closely related children might outweigh the time and energy costs of childcare. [45]

Family investment in offspring among black South African households also appears consistent with an inclusive fitness model. A higher degree of relatedness between children and their caregivers was correlated with a higher degree of investment in the children, with more food, health care, and clothing. Relatedness was also associated with the regularity of a child's visits to local medical practitioners and with the highest grade the child had completed in school, and negatively associated with children being behind in school for their age. [46]

Observation of the Dolgan hunter-gatherers of northern Russia suggested that there are larger and more frequent asymmetrical transfers of food to kin. Kin are more likely to be welcomed to non-reciprocal meals, while non-kin are discouraged from attending. Finally, when reciprocal food-sharing occurs between families, these families are often closely related, and the primary beneficiaries are the offspring. [47]

Violence in families is more likely when step-parents are present, and that "genetic relationship is associated with a softening of conflict, and people's evident valuations of themselves and of others are systematically related to the parties' reproductive values". [48] Numerous studies suggest how inclusive fitness may work amongst different peoples, such as the Ye'kwana of southern Venezuela, the Gypsies of Hungary, and the doomed Donner Party of the United States. [49] [50] [51] [52]

Human social patterns

Families are important in human behaviour, but kin selection may be based on closeness and other cues. Coloured-family.jpg
Families are important in human behaviour, but kin selection may be based on closeness and other cues.

Evolutionary psychologists, following early human sociobiologists' interpretation [53] of kin selection theory initially attempted to explain human altruistic behaviour through kin selection by stating that "behaviors that help a genetic relative are favored by natural selection." However, many evolutionary psychologists recognise that this common shorthand formulation is inaccurate: [54]

Many misunderstandings persist. In many cases, they result from conflating "coefficient of relatedness" and "proportion of shared genes", which is a short step from the intuitively appealing—but incorrect—interpretation that "animals tend to be altruistic toward those with whom they share a lot of genes." These misunderstandings don't just crop up occasionally; they are repeated in many writings, including undergraduate psychology textbooks—most of them in the field of social psychology, within sections describing evolutionary approaches to altruism.

As with the earlier sociobiological forays into the cross-cultural data, typical approaches are not able to find explanatory fit with the findings of ethnographers insofar that human kinship patterns are not necessarily built upon blood-ties. However, as Hamilton's later refinements of his theory make clear, it does not simply predict that genetically related individuals will inevitably recognise and engage in positive social behaviours with genetic relatives: rather, indirect context-based mechanisms may have evolved, which in historical environments have met the inclusive fitness criterion. Consideration of the demographics of the typical evolutionary environment of any species is crucial to understanding the evolution of social behaviours. As Hamilton himself put it, "Altruistic or selfish acts are only possible when a suitable social object is available. In this sense behaviours are conditional from the start". [31]

Under this perspective, and noting the necessity of a reliable context of interaction being available, the data on how altruism is mediated in social mammals is readily made sense of. In social mammals, primates and humans, altruistic acts that meet the kin selection criterion are typically mediated by circumstantial cues such as shared developmental environment, familiarity and social bonding. [55] That is, it is the context that mediates the development of the bonding process and the expression of the altruistic behaviours, not genetic relatedness as such. This interpretation is compatible with the cross-cultural ethnographic data and has been called nurture kinship. [34]

In plants

Observations

Though originally thought unique to the animal kingdom, evidence of kin selection has been identified in the plant kingdom. [56]

Competition for resources between developing zygotes in plant ovaries increases when seeds had been pollinated with male gametes from different plants. [57] How developing zygotes differentiate between full siblings and half-siblings in the ovary is undetermined, but genetic interactions are thought to play a role. [57] Nonetheless, competition between zygotes in the ovary is detrimental to the reproductive success of the (female) plant, and fewer zygotes mature into seeds. [57] As such, the reproductive traits and behaviors of plants suggests the evolution of behaviors and characteristics that increase the genetic relatedness of fertilized eggs in the plant ovary, thereby fostering kin selection and cooperation among the seeds as they develop. These traits differ among plant species. Some species have evolved to have fewer ovules per ovary, commonly one ovule per ovary, thereby decreasing the chance of developing multiple, differently fathered seeds within the same ovary. [57] Multi-ovulated plants have developed mechanisms that increase the chances of all ovules within the ovary being fathered by the same parent. Such mechanisms include dispersal of pollen in aggregated packets and closure of the stigmatic lobes after pollen is introduced. [57] The aggregated pollen packet releases pollen gametes in the ovary, thereby increasing likelihood that all ovules are fertilized by pollen from the same parent. [57] Likewise, the closure of the ovary pore prevents entry of new pollen. [57] Other multi-ovulated plants have evolved mechanisms that mimic the evolutionary adaption of single-ovulated ovaries; the ovules are fertilized by pollen from different individuals, but the mother ovary then selectively aborts fertilized ovules, either at the zygotic or embryonic stage. [57]

Morning glory plants grow smaller roots when next to kin than to non-kin plants. Ipomoea hederacea 001.JPG
Morning glory plants grow smaller roots when next to kin than to non-kin plants.

After seeds are dispersed, kin recognition and cooperation affects root formation in developing plants. [58] Studies have found that the total root mass developed by Ipomoea hederacea (morning glory shrubs) grown next to kin is significantly smaller than those grown next to non-kin; [58] [59] shrubs grown next to kin thus allocate less energy and resources to growing the larger root systems needed for competitive growth. When seedlings were grown in individual pots placed next to kin or non-kin relatives, no difference in root growth was observed. [59] This indicates that kin recognition occurs via signals received by the roots. [59] Further, groups of I. hederacea plants are more varied in height when grown with kin than when grown with non-kin. [58] The evolutionary benefit provided by this was further investigated by researchers at the Université de Montpellier. They found that the alternating heights seen in kin-grouped crops allowed for optimal light availability to all plants in the group; shorter plants next to taller plants had access to more light than those surrounded by plants of similar height. [60]

The above examples illustrate the effect of kin selection in the equitable allocation of light, nutrients, and water. The evolutionary emergence of single-ovulated ovaries in plants has eliminated the need for a developing seed to compete for nutrients, thus increasing its chance of survival and germination. [57] Likewise, the fathering of all ovules in multi-ovulated ovaries by one father, decreases the likelihood of competition between developing seeds, thereby also increasing the seeds' chances of survival and germination. [57] The decreased root growth in plants grown with kin increases the amount of energy available for reproduction; plants grown with kin produced more seeds than those grown with non-kin. [58] [59] Similarly, the increase in light made available by alternating heights in groups of related plants is associated with higher fecundity. [58] [60]

Kin selection has also been observed in plant responses to herbivory. In an experiment done by Richard Karban et al., leaves of potted Artemisia tridentata (sagebrushes) were clipped with scissors to simulate herbivory. The gaseous volatiles emitted by the clipped leaves were captured in a plastic bag. When these volatiles were transferred to leaves of a closely related sagebrush, the recipient experienced lower levels of herbivory than those that had been exposed to volatiles released by non-kin plants. [56] Sagebrushes do not uniformly emit the same volatiles in response to herbivory: the chemical ratios and composition of emitted volatiles vary from one sagebrush to another. [56] [61] Closely related sagebrushes emit similar volatiles, and the similarities decrease as relatedness decreases. [56] This suggests that the composition of volatile gasses plays a role in kin selection among plants. Volatiles from a distantly related plant are less likely to induce a protective response against herbivory in a neighboring plant, than volatiles from a closely related plant. [56] This fosters kin selection, as the volatiles emitted by a plant will activate the herbivorous defense response in related plants only, thus increasing their chance of survival and reproduction. [56]

Kin selection may play a role in plant-pollinator interactions, especially because pollinator attraction is influenced not only by floral displays, but by the spatial arrangement of plants in a group, which is referred to as the "magnet effect". [62] For example, in an experiment performed on Moricandia moricandioides, Torices et al. demonstrated that focal plants in the presence of kin show increased advertising effort (defined as total petal mass of plants in a group divided by the plant biomass) compared to those in the presence of non-kin, and that this effect is greater in larger groups. [62] M. moricandioides is a good model organism for the study of plant-pollinator interactions because it relies on pollinators for reproduction, as it is self-incompatible. [62] The study design for this experiment included planting establishing pots of M. moricandioides with zero, three or six neighbors (either unrelated or half-sib progeny of the same mother) and advertising effort was calculated after 26 days of flowering. [62] The exact mechanism of kin recognition in M. moricandioides is unknown, but possible mechanisms include above-ground communication with volatile compounds, [63] or below-ground communication with root exudates. [64]

Mechanisms in plants

The ability to differentiate between kin and non-kin is not necessary for kin selection in many animals. [65] However, because plants do not reliably germinate in close proximity to kin, it is thought that, within the plant kingdom, kin recognition is especially important for kin selection there, but the mechanism remains unknown. [65] [66]

One proposed mechanism for kin recognition involves communication through roots, with secretion and reception of root exudates. [65] [67] [68] [69] This would require exudates to be actively secreted by roots of one plant, and detected by roots of neighboring plants. [67] [68] The root exudate allantoin produced by rice plants, Oryza sativa , has been documented to be in greater production when growing next to cultivars that are largely unrelated. [69] [70] High production levels of Allantoin correlated to up regulation of auxin and auxin transporters, resulting in increased lateral root development and directional growth of their roots towards non kin, maximizing competition. [69] [70] This is mainly not observed in Oryza Sativa when surrounded by kin, invoking altruistic behaviors to promote inclusive fitness. [69] However the root receptors responsible for recognition of kin exudates, and the pathway induced by receptor activation, remain unknown. [68] The mycorrhiza associated with roots might facilitate reception of exudates, but again the mechanism is unknown. [71]

Another possibility is communication through green leaf volatiles. Karban et al. studied kin recognition in sagebrushes, Artemisia tridentata . The volatile-donating sagebrushes were kept in individual pots, separate from the plants that received the volatiles, finding that plants responded to herbivore damage to a neighbour's leaves. This suggests that root signalling is not necessary to induce a protective response against herbivory in neighbouring kin plants. Karban et al. suggest that plants may be able to differentiate between kin and non-kin based on the composition of volatiles. Because only the recipient sagebrush's leaves were exposed [56] the volatiles presumably activated a receptor protein in the plant's leaves. The identity of this receptor, and the signalling pathway triggered by its activation, both remain to be discovered. [72]

Objections

The theory of kin selection has been criticised by W. J. Alonso (in 1998) [73] and by Alonso and C. Schuck-Paim (in 2002). [74] They argue that the behaviours which kin selection attempts to explain are not altruistic (in pure Darwinian terms) because: (1) they may directly favour the performer as an individual aiming to maximise its progeny (so the behaviours can be explained as ordinary individual selection); (2) these behaviours benefit the group (so they can be explained as group selection); or (3) they are by-products of a developmental system of many "individuals" performing different tasks (like a colony of bees, or the cells of multicellular organisms, which are the focus of selection). They also argue that the genes involved in sex ratio conflicts could be treated as "parasites" of (already established) social colonies, not as their "promoters", and, therefore the sex ratio in colonies would be irrelevant to the transition to eusociality. [73] [74] Those ideas were mostly ignored until they were put forward again in a series of controversial [20] papers by E. O. Wilson, Bert Hölldobler, Martin Nowak and Corina Tarnita. [75] [76] [77] Nowak, Tarnita and Wilson argued that

Inclusive fitness theory is not a simplification over the standard approach. It is an alternative accounting method, but one that works only in a very limited domain. Whenever inclusive fitness does work, the results are identical to those of the standard approach. Inclusive fitness theory is an unnecessary detour, which does not provide additional insight or information.

Nowak, Tarnita, and Wilson [18]

They, like Alonso and Schuck-Paim, argue for a multi-level selection model instead. [18] This aroused a strong response, including a rebuttal published in Nature from over a hundred researchers. [20]

See also

Notes

  1. Further detail of Hamilton's rule is available at Simulating the Evolution of Sacrificing for Family: Discovering the specific definitions of r, B, and C, and at Hamilton’s Rule and Its Discontents: Why the general definitions of the variables always applies, but one specific definition can fail.

Related Research Articles

<span class="mw-page-title-main">Altruism</span> Principle or practice of concern for the welfare of others

Altruism is the principle and practice of concern for the well-being and/or happiness of other humans or animals above oneself. While objects of altruistic concern vary, it is an important moral value in many cultures and religions. It may be considered a synonym of selflessness, the opposite of selfishness.

<span class="mw-page-title-main">Reciprocal altruism</span> Form of behaviour between organisms

In evolutionary biology, reciprocal altruism is a behaviour whereby an organism acts in a manner that temporarily reduces its fitness while increasing another organism's fitness, with the expectation that the other organism will act in a similar manner at a later time.

<i>The Selfish Gene</i> 1976 book by Richard Dawkins

The Selfish Gene is a 1976 book on evolution by ethologist Richard Dawkins, in which the author builds upon the principal theory of George C. Williams's Adaptation and Natural Selection (1966). Dawkins uses the term "selfish gene" as a way of expressing the gene-centred view of evolution, popularising ideas developed during the 1960s by W. D. Hamilton and others. From the gene-centred view, it follows that the more two individuals are genetically related, the more sense it makes for them to behave cooperatively with each other.

<span class="mw-page-title-main">W. D. Hamilton</span> British evolutionary biologist (1936–2000)

William Donald Hamilton was a British evolutionary biologist, recognised as one of the most significant evolutionary theorists of the 20th century. Hamilton became known for his theoretical work expounding a rigorous genetic basis for the existence of altruism, an insight that was a key part of the development of the gene-centered view of evolution. He is considered one of the forerunners of sociobiology. Hamilton published important work on sex ratios and the evolution of sex. From 1984 to his death in 2000, he was a Royal Society Research Professor at Oxford University.

<span class="mw-page-title-main">Behavioral ecology</span> Study of the evolutionary basis for animal behavior due to ecological pressures

Behavioral ecology, also spelled behavioural ecology, is the study of the evolutionary basis for animal behavior due to ecological pressures. Behavioral ecology emerged from ethology after Niko Tinbergen outlined four questions to address when studying animal behaviors: What are the proximate causes, ontogeny, survival value, and phylogeny of a behavior?

<span class="mw-page-title-main">Group selection</span> Proposed mechanism of evolution

Group selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene.

In evolutionary biology, inclusive fitness is one of two metrics of evolutionary success as defined by W. D. Hamilton in 1964:

Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinian competition can be modelled. It originated in 1973 with John Maynard Smith and George R. Price's formalisation of contests, analysed as strategies, and the mathematical criteria that can be used to predict the results of competing strategies.

"The Genetical Evolution of Social Behaviour" is a 1964 scientific paper by the British evolutionary biologist W.D. Hamilton in which he mathematically lays out the basis for inclusive fitness.

The gene-centered view of evolution, gene's eye view, gene selection theory, or selfish gene theory holds that adaptive evolution occurs through the differential survival of competing genes, increasing the allele frequency of those alleles whose phenotypic trait effects successfully promote their own propagation. The proponents of this viewpoint argue that, since heritable information is passed from generation to generation almost exclusively by DNA, natural selection and evolution are best considered from the perspective of genes.

<span class="mw-page-title-main">Altruism (biology)</span> Behaviour that increases the fitness of another while decreasing the fitness of self

In biology, altruism refers to behaviour by an individual that increases the fitness of another individual while decreasing their own. Altruism in this sense is different from the philosophical concept of altruism, in which an action would only be called "altruistic" if it was done with the conscious intention of helping another. In the behavioural sense, there is no such requirement. As such, it is not evaluated in moral terms—it is the consequences of an action for reproductive fitness that determine whether the action is considered altruistic, not the intentions, if any, with which the action is performed.

The green-beard effect is a thought experiment used in evolutionary biology to explain selective altruism among individuals of a species.

In evolution, cooperation is the process where groups of organisms work or act together for common or mutual benefits. It is commonly defined as any adaptation that has evolved, at least in part, to increase the reproductive success of the actor's social partners. For example, territorial choruses by male lions discourage intruders and are likely to benefit all contributors.

Kin recognition, also called kin detection, is an organism's ability to distinguish between close genetic kin and non-kin. In evolutionary biology and psychology, such an ability is presumed to have evolved for inbreeding avoidance, though animals do not typically avoid inbreeding.

<span class="mw-page-title-main">Eusociality</span> Highest level of animal sociality a species can attain

Eusociality is the highest level of organization of sociality. It is defined by the following characteristics: cooperative brood care, overlapping generations within a colony of adults, and a division of labor into reproductive and non-reproductive groups. The division of labor creates specialized behavioral groups within an animal society, sometimes called castes. Eusociality is distinguished from all other social systems because individuals of at least one caste usually lose the ability to perform behaviors characteristic of individuals in another caste. Eusocial colonies can be viewed as superorganisms.

<span class="mw-page-title-main">Evolution of eusociality</span> Origins of cooperative brood care

Eusociality evolved repeatedly in different orders of animals, notably termites and the Hymenoptera. This 'true sociality' in animals, in which sterile individuals work to further the reproductive success of others, is found in termites, ambrosia beetles, gall-dwelling aphids, thrips, marine sponge-dwelling shrimp, naked mole-rats, and many genera in the insect order Hymenoptera. The fact that eusociality has evolved so often in the Hymenoptera, but remains rare throughout the rest of the animal kingdom, has made its evolution a topic of debate among evolutionary biologists. Eusocial organisms at first appear to behave in stark contrast with simple interpretations of Darwinian evolution: passing on one's genes to the next generation, or fitness, is a central idea in evolutionary biology.

Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.

Synalpheus regalis is a species of snapping shrimp that commonly live in sponges in the coral reefs along the tropical West Atlantic. They form a prominent component of the diverse marine cryptofauna of the region. For the span of their entire lives, they live in the internal canals of the host sponge, using it as a food resource and shelter. It has been shown that colonies contain over 300 individuals, but only one reproductive female. Also, larger colony members, most of which apparently never breed, defend the colony against heterospecific intruders. This evidence points towards the first known case of eusociality in a marine animal.

Inclusive fitness in humans is the application of inclusive fitness theory to human social behaviour, relationships and cooperation.

Reciprocal altruism in humans refers to an individual behavior that gives benefit conditionally upon receiving a returned benefit, which draws on the economic concept – ″gains in trade″. Human reciprocal altruism would include the following behaviors : helping patients, the wounded, and the others when they are in crisis; sharing food, implement, knowledge.

References

  1. 1 2 West, S. A.; Griffin, A. S.; Gardner, A. (March 2007). "Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection". Journal of Evolutionary Biology . 20 (2): 415–432. doi:10.1111/j.1420-9101.2006.01258.x. PMID   17305808. S2CID   1792464.
  2. 1 2 3 4 5 6 Hamilton, W. D. (1964). "The Genetical Evolution of Social Behaviour". Journal of Theoretical Biology. 7 (1): 1–16. Bibcode:1964JThBi...7....1H. doi:10.1016/0022-5193(64)90038-4. PMID   5875341.
  3. 1 2 3 Hamilton, W. D. (1964). "The Genetical Evolution of Social Behaviour. II". Journal of Theoretical Biology. 7 (1): 17–52. Bibcode:1964JThBi...7...17H. doi:10.1016/0022-5193(64)90039-6. PMID   5875340.
  4. 1 2 Darwin, Charles (1859). The Origin of Species. pp. Chapter VIII. Instinct: Objections to the theory of natural selection as applied to instincts: neuter and sterile insects. Archived from the original on 2016-08-16. Retrieved 2013-03-08.
  5. Futuyma, Douglas J. (1998). Evolutionary Biology (3 ed.). Sunderland, Massachusetts USA: Sinauer Associates. p. 595. ISBN   978-0-87893-189-7.
  6. Wilson, Edward O. (2000). Sociobiology: The New Synthesis (25th ed.). Cambridge, Massachusetts USA: The Belknap Press of Harvard University Press. pp. 117–118. ISBN   978-0-674-00089-6.
  7. Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press. p.  159.
  8. Haldane, J. B. S. (1932). The Causes of Evolution. London: Longmans, Green & Co.
  9. Haldane, J. B. S. (1955). "Population Genetics". New Biology. 18: 34–51.
  10. Kevin Connolly; Margaret Martlew, eds. (1999). "Altruism". Psychologically Speaking: A Book of Quotations. BPS Books. p. 10. ISBN   978-1-85433-302-5.
  11. q:J. B. S. Haldane
  12. "John B. S. Haldane Quotes". brainyquote.com.
  13. Haldane, J. B. S. (1955). "Population genetics". New Biology. 18: 34–51.
  14. Hamilton, W. D. (1963). "The evolution of altruistic behavior". American Naturalist . 97 (896): 354–356. doi:10.1086/497114. S2CID   84216415.
  15. Price, George R. (1970-08-01). "Selection and Covariance". Nature. 227 (5257): 520–521. Bibcode:1970Natur.227..520P. doi:10.1038/227520a0. ISSN   1476-4687. PMID   5428476. S2CID   4264723.
  16. Maynard Smith, John (1964). "Group Selection and Kin Selection". Nature. 201 (4924): 1145–1147. Bibcode:1964Natur.201.1145S. doi:10.1038/2011145a0. S2CID   4177102.
  17. Lucas, J. R.; Creel, S. R.; Waser, P. M. (1996). "How to Measure Inclusive Fitness, Revisited". Animal Behaviour. 51 (1): 225–228. doi:10.1006/anbe.1996.0019. S2CID   53186512.
  18. 1 2 3 4 Nowak, Martin; Tarnita, Corina; Wilson, E. O. (2010). "The evolution of eusociality". Nature. 466 (7310): 1057–1062. Bibcode:2010Natur.466.1057N. doi:10.1038/nature09205. PMC   3279739 . PMID   20740005.
  19. Wilson, E.O. (2012). The Social Conquest of Earth .
  20. 1 2 3 Abbot; et al. (2011). "Inclusive fitness theory and eusociality". Nature. 471 (7339): E1–E4. Bibcode:2011Natur.471E...1A. doi:10.1038/nature09831. PMC   3836173 . PMID   21430721.
  21. Queller, D. C.; Strassman, J. E. (2002). "Quick Guide: Kin Selection". Current Biology . 12 (24): R832. doi: 10.1016/s0960-9822(02)01344-1 . PMID   12498698. S2CID   12698065.
  22. West, S. A.; Gardner, A.; Griffin, A. S. (2006). "Quick Guide: Altruism". Current Biology. 16 (13): R482–R483. doi: 10.1016/j.cub.2006.06.014 . PMID   16824903.
  23. Wright, Sewall (1922). "Coefficients of inbreeding and relationship". American Naturalist . 56 (645): 330–338. doi:10.1086/279872. S2CID   83865141.
  24. Grafen, Alan (1985). "A geometric view of relatedness" (PDF).
  25. Bourke, Andrew F. G. (2014). "Hamilton's rule and the causes of social evolution". Philosophical Transactions of the Royal Society B: Biological Sciences. 369 (1642). The Royal Society: 20130362. doi: 10.1098/rstb.2013.0362 . ISSN   0962-8436. PMC   3982664 . PMID   24686934.
  26. Gorrell, Jamieson C.; McAdam, Andrew G.; Coltman, David W.; Humphries, Murray M.; Boutin, Stan (June 2010). "Adopting kin enhances inclusive fitness in asocial red squirrels". Nature Communications. 1 (22): 22. Bibcode:2010NatCo...1...22G. doi: 10.1038/ncomms1022 . hdl: 10613/3207 . PMID   20975694.
  27. Madsen, E. A.; Tunney, R. J.; Fieldman, G.; Plotkin, H. C.; Dunbar, R. I. M.; Richardson, J. M.; McFarland, D. (2007). "Kinship and Altruism: a Cross-Cultural Experimental Study" (PDF). British Journal of Psychology. 98 (2): 339–359. doi:10.1348/000712606X129213. PMID   17456276. S2CID   18056028.
  28. Ho, Hsing-I; Shaulsky, Gad (2015). "Temporal regulation of kin recognition maintains recognition-cue diversity and suppresses cheating". Nature Communications. 6: 7144. Bibcode:2015NatCo...6.7144H. doi: 10.1038/ncomms8144 . PMC   4448137 . PMID   26018043.
  29. Grafen, Alan (6 August 1998). "Green beard as death warrant" (PDF). Nature . 394 (6693): 521–522. doi: 10.1038/28948 . S2CID   28124873.
  30. Jansen, Vincent A.A.; van Baalen, Minus (2006). "Altruism through beard chromodynamics". Nature. 440 (7084): 663–666. Bibcode:2006Natur.440..663J. doi:10.1038/nature04387. PMID   16572169.
  31. 1 2 Hamilton, W. D. (1987). "Discriminating Nepotism: Expectable, Common and Overlooked". In Fletcher, D. J. C.; Michener, C. D. (eds.). Kin Recognition in Animals. New York: Wiley. p. 425.
  32. West, Stuart A.; El Mouden, Claire; Gardner, Andy (2011). "Sixteen common misconceptions about the evolution of cooperation in humans". Evolution and Social Behaviour. 32 (4): 231–262. Bibcode:2011EHumB..32..231W. CiteSeerX   10.1.1.188.3318 . doi:10.1016/j.evolhumbehav.2010.08.001.
  33. Holland, Maximilian. (2004) Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches. London School of Economics, PhD Thesis
  34. 1 2 Holland, Maximilian. (2012) Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches. North Charleston: Createspace Press.
  35. Freeman, Scott; Herron, Jon C. (2007). Evolutionary Analysis (4th ed.). Upper Saddle River, NJ: Pearson, Prentice Hall. p. 460. ISBN   978-0-13-227584-2.
  36. Duffy, J. Emmett; Morrison, Cheryl L.; Macdonald, Kenneth S. (2002). "Colony defense and behavioral differentiation in the eusocial shrimp Synalpheus regalis" (PDF). Behavioral Ecology and Sociobiology . 51 (5): 488–495. Bibcode:2002BEcoS..51..488D. doi:10.1007/s00265-002-0455-5. S2CID   25384748. Archived from the original (PDF) on 2015-08-03.
  37. Lee, P. C. (1987). "Sibships: Cooperation and Competition Among Immature Vervet Monkeys". Primates . 28 (1): 47–59. doi:10.1007/bf02382182. S2CID   21449948.
  38. Fairbanks, Lynn A. (1990). "Reciprocal benefits of allomothering for female vervet monkeys". Animal Behaviour . 40 (3): 553–562. doi:10.1016/s0003-3472(05)80536-6. S2CID   53193890.
  39. 1 2 Cartwright, J. (2000). Evolution and human behavior: Darwinian perspectives on human nature. Massachusetts: MIT Press.
  40. Essock-Vitale, S. M.; McGuire, M. T. (1985). "Women's lives viewed from an evolutionary perspective. II. Patterns in helping". Ethology and Sociobiology. 6 (3): 155–173. doi:10.1016/0162-3095(85)90028-7.
  41. Barber, N. (1994). "Machiavellianism and altruism: Effects of relatedness of target person on Machiavellian and helping attitudes". Psychological Reports. 75: 403–22. doi:10.2466/pr0.1994.75.1.403. S2CID   144789875.
  42. Madsen, E. A.; Tunney, R. J.; Fieldman, G.; et al. (2007). "Kinship and altruism: A cross-cultural experimental study" (PDF). British Journal of Psychology. 98 (Pt 2): 339–359. doi:10.1348/000712606X129213. PMID   17456276. S2CID   18056028.
  43. Betzig, L.; Turke, P. (1986). "Food sharing on Ifaluk". Current Anthropology. 27 (4): 397–400. doi:10.1086/203457. S2CID   144688339.
  44. Smith, M.; Kish, B.; Crawford, C. (1987). "Inheritance of wealth as human kin investment". Ethology and Sociobiology. 8 (3): 171–182. doi:10.1016/0162-3095(87)90042-2.
  45. Davis, J. N.; Daly, M. (1997). "Evolutionary theory and the human family". Quarterly Review of Biology. 72 (4): 407–35. doi:10.1086/419953. PMID   9407672. S2CID   25615336.
  46. Anderson, K. G. (2005). "Relatedness and investment: Children in South Africa". Human Nature. 16 (1): 1–31. doi:10.1007/s12110-005-1005-4. PMID   26189514. S2CID   23623318.
  47. Ziker, J.; Schnegg, M. (2005). "Food sharing at meals: Kinship, reciprocity, and clustering in the Taimyr Autonomous Okrug, northern Russia". Human Nature. 16 (2): 178–210. doi:10.1007/s12110-005-1003-6. PMID   26189622. S2CID   40299498.
  48. Daly, M.; Wilson (1988). "Evolutionary social-psychology and family homicide". Science. 242 (4878): 519–524. Bibcode:1988Sci...242..519D. doi:10.1126/science.3175672. PMID   3175672.
  49. Hames, R. (1979). "Garden labor exchange among the Ye'kwana". Ethology and Sociobiology. 8 (4): 259–84. doi:10.1016/0162-3095(87)90028-8.
  50. Bereczkei, T. (1998). "Kinship network, direct childcare, and fertility among Hungarians and Gypsies". Evolution and Human Behavior. 19 (5): 283–298. Bibcode:1998EHumB..19..283B. doi:10.1016/S1090-5138(98)00027-0.
  51. Grayson, D. K. (1993). "Differential mortality and the Donner Party disaster". Evolutionary Anthropology. 2 (5): 151–9. doi:10.1002/evan.1360020502. S2CID   84880972.
  52. Dunbar, R. (2008). "Kinship in biological perspective". In N. J. Allen; H. Callan; R. Dunbar; W. James (eds.). Early human kinship: From sex to social reproduction. New Jersey: Blackwell Publishing. pp. 131–150.
  53. Daly, M.; Wilson, M. I. (1999). "An evolutionary psychological perspective on homicide". In Smith, D.; Zahn, M. (eds.). Homicide Studies: A Sourcebook of Social Research. Thousand Oaks: Sage Publications.
  54. Park, J.H. (2007). "Persistent Misunderstandings of Inclusive Fitness and Kin Selection: Their Ubiquitous Appearance in Social Psychology Textbooks". Evolutionary Psychology. 5 (4): 860–873. doi: 10.1177/147470490700500414 .
  55. Sherman et al (1997) Recognition Systems. In Behavioural Ecology, edited by J. R. Krebs and N. B. Davies. Oxford: Blackwell Scientific.
  56. 1 2 3 4 5 6 7 Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi; Wetzel, William C.; Evans, Richard Y. (22 January 2013). "Kin recognition affects plant communication and defence". Proceedings of the Royal Society B: Biological Sciences. 280 (1756): 20123062. doi:10.1098/rspb.2012.3062. PMC   3574382 . PMID   23407838.
  57. 1 2 3 4 5 6 7 8 9 10 Bawa, Kamaljit S. (24 June 2016). "Kin selection and the evolution of plant reproductive traits". Proceedings of the Royal Society B: Biological Sciences. 283 (1842): 20160789. doi:10.1098/rspb.2016.0789. PMC   5124086 . PMID   27852800.
  58. 1 2 3 4 5 Biernaskie, Jay M. (8 December 2010). "Evidence for competition and cooperation among climbing plants". Proceedings of the Royal Society B: Biological Sciences. 278 (1714): 1989–1996. doi:10.1098/rspb.2010.1771. ISSN   0962-8452. PMC   3107641 . PMID   21147795.
  59. 1 2 3 4 Dudley, Susan A.; File, Amanda L. (13 June 2007). "Kin recognition in an annual plant". Biology Letters. 3 (4): 435–438. doi:10.1098/rsbl.2007.0232. ISSN   1744-9561. PMC   2104794 . PMID   17567552.
  60. 1 2 Montazeaud, Germain; Rousset, François; Fort, Florian; Violle, Cyrille; Fréville, Hélène; Gandon, Sylvain (22 January 2020). "Farming plant cooperation in crops". Proceedings of the Royal Society B: Biological Sciences. 287 (1919): 20191290. doi:10.1098/rspb.2019.1290. PMC   7015324 . PMID   31964305.
  61. Karban, Richard; Shiojiri, Kaori (15 May 2009). "Self-recognition affects plant communication and defense". Ecology Letters. 12 (6): 502–506. Bibcode:2009EcolL..12..502K. doi:10.1111/j.1461-0248.2009.01313.x. PMC   3014537 . PMID   19392712.
  62. 1 2 3 4 Torices, Rubén; Gómez, José M.; Pannell, John R. (2018). "Kin discrimination allows plants to modify investment towards pollinator attraction". Nature Communications. 9 (1): 2018. Bibcode:2018NatCo...9.2018T. doi:10.1038/s41467-018-04378-3. ISSN   2041-1723. PMC   5964244 . PMID   29789560.
  63. Karban, Richard; Shiojiri, Kaori; Ishizaki, Satomi; Wetzel, William C.; Evans, Richard Y. (2013-04-07). "Kin recognition affects plant communication and defence". Proceedings of the Royal Society B: Biological Sciences. 280 (1756): 20123062. doi:10.1098/rspb.2012.3062. ISSN   0962-8452. PMC   3574382 . PMID   23407838.
  64. Semchenko, Marina; Saar, Sirgi; Lepik, Anu (2014-07-10). "Plant root exudates mediate neighbour recognition and trigger complex behavioural changes". New Phytologist. 204 (3): 631–637. doi: 10.1111/nph.12930 . ISSN   0028-646X. PMID   25039372.
  65. 1 2 3 File, Amanda L.; Murphy, Guillermo P.; Dudley, Susan A. (9 November 2011). "Fitness consequences of plants growing with siblings: reconciling kin selection, niche partitioning and competitive ability". Proceedings of the Royal Society B: Biological Sciences. 279 (1727): 209–218. doi:10.1098/rspb.2011.1995. ISSN   0962-8452. PMC   3223689 . PMID   22072602.
  66. Dam, Nicole M. van; Bouwmeester, Harro J. (March 2016). "Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication". Trends in Plant Science. 21 (3): 256–265. Bibcode:2016TPS....21..256V. doi:10.1016/j.tplants.2016.01.008. ISSN   1360-1385. PMID   26832948.
  67. 1 2 Rahman, Muhammad Khashi u; Zhou, Xingang; Wu, Fengzhi (5 Aug 2019). "The role of root exudates, CMNs, and VOCs in plant–plant interaction". Journal of Plant Interactions. 14 (1): 630–636. Bibcode:2019JPlaI..14..630K. doi: 10.1080/17429145.2019.1689581 . ISSN   1742-9145.
  68. 1 2 3 Biedrzycki, Meredith L.; Jilany, Tafari A.; Dudley, Susan A.; Bais, Harsh P. (Jan–Feb 2010). "Root exudates mediate kin recognition in plants". Communicative & Integrative Biology. 3 (1): 28–35. doi:10.4161/cib.3.1.10118. ISSN   1942-0889. PMC   2881236 . PMID   20539778.
  69. 1 2 3 4 Yang, Xue-Fang; Li, Lei-Lei; Xu, You; Kong, Chui-Hua (October 2018). "Kin recognition in rice ( Oryza sativa) lines". New Phytologist. 220 (2): 567–578. doi: 10.1111/nph.15296 . PMID   29956839. S2CID   49590796.
  70. 1 2 Anten, Niels P. R.; Chen, Bin J. W. (April 2021). "Detect thy family: Mechanisms, ecology and agricultural aspects of kin recognition in plants". Plant, Cell & Environment. 44 (4): 1059–1071. doi:10.1111/pce.14011. PMC   8048686 . PMID   33522615.
  71. Johnson, David; Gilbert, Lucy (12 September 2014). "Interplant signalling through hyphal networks". New Phytologist. 205 (4): 1448–1453. doi: 10.1111/nph.13115 . PMID   25421970.
  72. Bouwmeester, Harro; Schuurink, Robert C.; Bleeker, Petra M.; Schiestl, Florian (Dec 2019). "The role of volatiles in plant communication". The Plant Journal. 100 (5): 892–907. doi:10.1111/tpj.14496. ISSN   0960-7412. PMC   6899487 . PMID   31410886.
  73. 1 2 Alonso, W. J. (1998). "The role of Kin Selection theory on the explanation of biological altruism: A critical Review" (PDF). Journal of Comparative Biology. 3 (1): 1–14. Archived from the original (PDF) on 2013-11-09. Retrieved 2013-03-16.
  74. 1 2 Alonso, W. J.; Schuck-Paim, C. (2002). "Sex-ratio conflicts, kin selection, and the evolution of altruism". PNAS. 99 (10): 6843–6847. Bibcode:2002PNAS...99.6843A. doi: 10.1073/pnas.092584299 . PMC   124491 . PMID   11997461.
  75. Wilson, Edward O.; Hölldobler, Bert (2005). "Eusociality: origin and consequences". PNAS. 102 (38): 13367–13371. Bibcode:2005PNAS..10213367W. doi: 10.1073/pnas.0505858102 . PMC   1224642 . PMID   16157878.
  76. Wilson, E. O. (2008). "One giant leap: how insects achieved altruism and colonial life". BioScience. 58: 17–25. doi: 10.1641/b580106 .
  77. Nowak, M. A.; Tarnita, Corina E.; Wilson, E. O. (2010). "The evolution of eusociality". Nature. 466 (7310): 1057–1062. Bibcode:2010Natur.466.1057N. doi:10.1038/nature09205. PMC   3279739 . PMID   20740005.