Price equation

Last updated

In the theory of evolution and natural selection, the Price equation (also known as Price's equation or Price's theorem) describes how a trait or allele changes in frequency over time. The equation uses a covariance between a trait and fitness, to give a mathematical description of evolution and natural selection. It provides a way to understand the effects that gene transmission and natural selection have on the frequency of alleles within each new generation of a population. The Price equation was derived by George R. Price, working in London to re-derive W.D. Hamilton's work on kin selection. Examples of the Price equation have been constructed for various evolutionary cases. The Price equation also has applications in economics. [1]

Contents

It is important to note that the Price equation is not a physical or biological law. It is not a concise or general expression of experimentally validated results. It is rather a purely mathematical relationship between various statistical descriptors of population dynamics. It is mathematically valid, and therefore not subject to experimental verification. In simple terms, it is a mathematical restatement of the expression "survival of the fittest" which is actually self-evident, given the mathematical definitions of "survival" and "fittest".

Statement

Example for a trait under positive selection Example of Price equation for a trait under positive selection.png
Example for a trait under positive selection

The Price equation shows that a change in the average amount of a trait in a population from one generation to the next () is determined by the covariance between the amounts of the trait for subpopulation and the fitnesses of the subpopulations, together with the expected change in the amount of the trait value due to fitness, namely :

Here is the average fitness over the population, and and represent the population mean and covariance respectively. 'Fitness' is the ratio of the average number of offspring for the whole population per the number of adult individuals in the population, and is that same ratio only for subpopulation .

If the covariance between fitness () and trait value () is positive, the trait value is expected to rise on average across population . If the covariance is negative, the characteristic is harmful, and its frequency is expected to drop.

The second term, , represents the portion of due to all factors other than direct selection which can affect trait evolution. This term can encompass genetic drift, mutation bias, or meiotic drive. Additionally, this term can encompass the effects of multi-level selection or group selection. Price (1972) referred to this as the "environment change" term, and denoted both terms using partial derivative notation (∂NS and ∂EC). This concept of environment includes interspecies and ecological effects. Price describes this as follows:

Fisher adopted the somewhat unusual point of view of regarding dominance and epistasis as being environment effects. For example, he writes (1941): ‘A change in the proportion of any pair of genes itself constitutes a change in the environment in which individuals of the species find themselves.’ Hence he regarded the natural selection effect on M as being limited to the additive or linear effects of changes in gene frequencies, while everything else – dominance, epistasis, population pressure, climate, and interactions with other species – he regarded as a matter of the environment.

G.R. Price (1972), Fisher's fundamental theorem made clear [2]

Proof

Suppose we are given four equal-length lists of real numbers [3] , , , from which we may define . and will be called the parent population numbers and characteristics associated with each index i. Likewise and will be called the child population numbers and characteristics, and will be called the fitness associated with index i. (Equivalently, we could have been given , , , with .) Define the parent and child population totals:

and the probabilities (or frequencies): [4]

Note that these are of the form of probability mass functions in that and are in fact the probabilities that a random individual drawn from the parent or child population has a characteristic . Define the fitnesses:

The average of any list is given by:

so the average characteristics are defined as:

and the average fitness is:

A simple theorem can be proved: so that:

and

The covariance of and is defined by:

Defining , the expectation value of is

The sum of the two terms is:

Using the above mentioned simple theorem, the sum becomes

where .

Derivation of the continuous-time Price equation

Consider a set of groups with that are characterized by a particular trait, denoted by . The number of individuals belonging to group experiences exponential growth:

where corresponds to the fitness of the group. We want to derive an equation describing the time-evolution of the expected value of the trait:

Based on the chain rule, we may derive an ordinary differential equation:

A further application of the chain rule for gives us:

Summing up the components gives us that:

which is also known as the replicator equation. Now, note that:

Therefore, putting all of these components together, we arrive at the continuous-time Price equation:

Simple Price equation

When the characteristic values do not change from the parent to the child generation, the second term in the Price equation becomes zero resulting in a simplified version of the Price equation:

which can be restated as:

where is the fractional fitness: .

This simple Price equation can be proven using the definition in Equation (2) above. It makes this fundamental statement about evolution: "If a certain inheritable characteristic is correlated with an increase in fractional fitness, the average value of that characteristic in the child population will be increased over that in the parent population."

Applications

The Price equation can describe any system that changes over time, but is most often applied in evolutionary biology. The evolution of sight provides an example of simple directional selection. The evolution of sickle cell anemia shows how a heterozygote advantage can affect trait evolution. The Price equation can also be applied to population context dependent traits such as the evolution of sex ratios. Additionally, the Price equation is flexible enough to model second order traits such as the evolution of mutability. The Price equation also provides an extension to Founder effect which shows change in population traits in different settlements

Dynamical sufficiency and the simple Price equation

Sometimes the genetic model being used encodes enough information into the parameters used by the Price equation to allow the calculation of the parameters for all subsequent generations. This property is referred to as dynamical sufficiency. For simplicity, the following looks at dynamical sufficiency for the simple Price equation, but is also valid for the full Price equation.

Referring to the definition in Equation (2), the simple Price equation for the character can be written:

For the second generation:

The simple Price equation for only gives us the value of for the first generation, but does not give us the value of and , which are needed to calculate for the second generation. The variables and can both be thought of as characteristics of the first generation, so the Price equation can be used to calculate them as well:

The five 0-generation variables , , , , and must be known before proceeding to calculate the three first generation variables , , and , which are needed to calculate for the second generation. It can be seen that in general the Price equation cannot be used to propagate forward in time unless there is a way of calculating the higher moments and from the lower moments in a way that is independent of the generation. Dynamical sufficiency means that such equations can be found in the genetic model, allowing the Price equation to be used alone as a propagator of the dynamics of the model forward in time.

Full Price equation

The simple Price equation was based on the assumption that the characters do not change over one generation. If it is assumed that they do change, with being the value of the character in the child population, then the full Price equation must be used. A change in character can come about in a number of ways. The following two examples illustrate two such possibilities, each of which introduces new insight into the Price equation.

Genotype fitness

We focus on the idea of the fitness of the genotype. The index indicates the genotype and the number of type genotypes in the child population is:

which gives fitness:

Since the individual mutability does not change, the average mutabilities will be:

with these definitions, the simple Price equation now applies.

Lineage fitness

In this case we want to look at the idea that fitness is measured by the number of children an organism has, regardless of their genotype. Note that we now have two methods of grouping, by lineage, and by genotype. It is this complication that will introduce the need for the full Price equation. The number of children an -type organism has is:

which gives fitness:

We now have characters in the child population which are the average character of the -th parent.

with global characters:

with these definitions, the full Price equation now applies.

Criticism

The use of the change in average characteristic () per generation as a measure of evolutionary progress is not always appropriate. There may be cases where the average remains unchanged (and the covariance between fitness and characteristic is zero) while evolution is nevertheless in progress. For example, if we have , , and , then for the child population, showing that the peak fitness at is in fact fractionally increasing the population of individuals with . However, the average characteristics are z=2 and z'=2 so that . The covariance is also zero. The simple Price equation is required here, and it yields 0=0. In other words, it yields no information regarding the progress of evolution in this system.

A critical discussion of the use of the Price equation can be found in van Veelen (2005), [5] van Veelen et al. (2012), [6] and van Veelen (2020). [7] Frank (2012) discusses the criticism in van Veelen et al. (2012). [8]

Cultural references

Price's equation features in the plot and title of the 2008 thriller film WΔZ .

The Price equation also features in posters in the computer game BioShock 2 , in which a consumer of a "Brain Boost" tonic is seen deriving the Price equation while simultaneously reading a book. The game is set in the 1950s, substantially before Price's work.

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely used inequalities in mathematics.

Covariance in probability theory and statistics is a measure of the joint variability of two random variables.

<span class="mw-page-title-main">Covariance matrix</span> Measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector.

<span class="mw-page-title-main">Helmholtz free energy</span> Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which temperature is held constant. At constant temperature, the Helmholtz free energy is minimized at equilibrium.

In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for which a mathematical solution is known, and add an additional "perturbing" Hamiltonian representing a weak disturbance to the system. If the disturbance is not too large, the various physical quantities associated with the perturbed system can be expressed as "corrections" to those of the simple system. These corrections, being small compared to the size of the quantities themselves, can be calculated using approximate methods such as asymptotic series. The complicated system can therefore be studied based on knowledge of the simpler one. In effect, it is describing a complicated unsolved system using a simple, solvable system.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, the replicator equation is a deterministic monotone non-linear and non-innovative game dynamic used in evolutionary game theory. The replicator equation differs from other equations used to model replication, such as the quasispecies equation, in that it allows the fitness function to incorporate the distribution of the population types rather than setting the fitness of a particular type constant. This important property allows the replicator equation to capture the essence of selection. Unlike the quasispecies equation, the replicator equation does not incorporate mutation and so is not able to innovate new types or pure strategies.

Within mathematical finance, the intertemporal capital asset pricing model, or ICAPM, is an alternative to the CAPM provided by Robert Merton. It is a linear factor model with wealth as state variable that forecasts changes in the distribution of future returns or income.

In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.

In mathematical physics the Knizhnik–Zamolodchikov equations, or KZ equations, are linear differential equations satisfied by the correlation functions of two-dimensional conformal field theories associated with an affine Lie algebra at a fixed level. They form a system of complex partial differential equations with regular singular points satisfied by the N-point functions of affine primary fields and can be derived using either the formalism of Lie algebras or that of vertex algebras.

A formula may be derived mathematically for the rate of scattering when a beam of electrons passes through a material.

In probability theory and directional statistics, a wrapped probability distribution is a continuous probability distribution that describes data points that lie on a unit n-sphere. In one dimension, a wrapped distribution consists of points on the unit circle. If is a random variate in the interval with probability density function (PDF) , then is a circular variable distributed according to the wrapped distribution and is an angular variable in the interval distributed according to the wrapped distribution .

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

References

  1. Knudsen, Thorbjørn (2004). "General selection theory and economic evolution: The Price equation and the replicator/interactor distinction". Journal of Economic Methodology. 11 (2): 147–173. doi:10.1080/13501780410001694109. S2CID   154197796 . Retrieved 2011-10-22.
  2. Price, G.R. (1972). "Fisher's "fundamental theorem" made clear". Annals of Human Genetics. 36 (2): 129–140. doi:10.1111/j.1469-1809.1972.tb00764.x. PMID   4656569. S2CID   20757537.
  3. The lists may in fact be members of any field (i.e. a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do
  4. Frank, Steven A. (1995). "George Price's Contributions to Evolutionary Genetics". J. Theor. Biol. 175 (3): 373–388. Bibcode:1995JThBi.175..373F. doi:10.1006/jtbi.1995.0148. PMID   7475081 . Retrieved Mar 19, 2023.
  5. van Veelen, M. (December 2005). "On the use of the Price equation". Journal of Theoretical Biology. 237 (4): 412–426. Bibcode:2005JThBi.237..412V. doi:10.1016/j.jtbi.2005.04.026. PMID   15953618.
  6. van Veelen, M.; García, J.; Sabelis, M.W.; Egas, M. (April 2012). "Group selection and inclusive fitness are not equivalent; the Price equation vs. models and statistics". Journal of Theoretical Biology. 299: 64–80. Bibcode:2012JThBi.299...64V. doi:10.1016/j.jtbi.2011.07.025. PMID   21839750.
  7. van Veelen, M. (March 2020). "The problem with the Price equation". Philosophical Transactions of the Royal Society B. 375 (1797): 1–13. doi: 10.1098/rstb.2019.0355 . PMC   7133513 . PMID   32146887.
  8. Frank, S.A. (2012). "Natural Selection IV: The Price equation". Journal of Evolutionary Biology. 25 (6): 1002–1019. arXiv: 1204.1515 . doi:10.1111/j.1420-9101.2012.02498.x. PMC   3354028 . PMID   22487312.

Further reading