Gigantothermy

Last updated

Gigantothermy (sometimes called ectothermic homeothermy or inertial homeothermy) is a phenomenon with significance in biology and paleontology, whereby large, bulky ectothermic animals are more easily able to maintain a constant, relatively high body temperature than smaller animals by virtue of their smaller surface-area-to-volume ratio. [1] A bigger animal has proportionately less of its body close to the outside environment than a smaller animal of otherwise similar shape, and so it gains heat from, or loses heat to, the environment much more slowly. [2]

Contents

The phenomenon is important in the biology of ectothermic megafauna, such as large turtles, and aquatic reptiles like ichthyosaurs and mosasaurs.[ citation needed ] Gigantotherms, though almost always ectothermic, generally have a body temperature similar to that of endotherms.[ citation needed ] It has been suggested that the larger dinosaurs would have been gigantothermic, rendering them virtually homeothermic. [3]

Disadvantages

Gigantothermy allows animals to maintain body temperature, but is most likely detrimental to endurance and muscle power as compared with endotherms due to decreased anaerobic efficiency. [4] Mammals' bodies have roughly four times as much surface area occupied by mitochondria as reptiles,[ clarification needed ] necessitating larger energy demands, and consequently producing more heat to use in thermoregulation. An ectotherm the same size of an endotherm would not be able to remain as active as the endotherm, as heat is modulated behaviorally rather than biochemically. More time is dedicated to basking than eating.

Advantages

Large ectotherms displaying the same body size as large endotherms have the advantage of a slow metabolic rate, meaning that it takes reptiles longer to digest their food. Consequently gigantothermic ectotherms would not have to eat as often as large endotherms that need to maintain a constant influx of food to meet energy demands. Although lions are much smaller than crocodiles, the lions must eat more often than crocodiles because of the higher metabolic output necessary to maintain the lion's heat and energy. The crocodile needs only to lie in the sun to digest more quickly and synthesize ATP.

See also

Related Research Articles

An endothermic process is a chemical or physical process that absorbs heat from its surroundings. In terms of thermodynamics, it is a thermodynamic process with an increase in the enthalpy H of the system. In an endothermic process, the heat that a system absorbs is thermal energy transfer into the system. Thus, an endothermic reaction generally leads to an increase in the temperature of the system and a decrease in that of the surroundings.

<span class="mw-page-title-main">Warm-blooded</span> Animal species that can maintain a body temperature higher than their environment

Warm-blooded is a term referring to animal species whose bodies maintain a temperature higher than that of their environment. In particular, homeothermic species maintain a stable body temperature by regulating metabolic processes. Other species have various degrees of thermoregulation.

<span class="mw-page-title-main">Hibernation</span> Physiological state of dormant inactivity in order to pass the winter season

Hibernation is a state of minimal activity and metabolic depression undergone by some animal species. Hibernation is a seasonal heterothermy characterized by low body-temperature, slow breathing and heart-rate, and low metabolic rate. It is most commonly used to pass through winter months – called overwintering.

<span class="mw-page-title-main">Homeothermy</span> Thermoregulation that maintains a stable internal body temperature regardless of external influence

Homeothermy, homothermy or homoiothermy is thermoregulation that maintains a stable internal body temperature regardless of external influence. This internal body temperature is often, though not necessarily, higher than the immediate environment. Homeothermy is one of the 3 types of thermoregulation in warm-blooded animal species. Homeothermy's opposite is poikilothermy. A poikilotherm is an organism that does not maintain a fixed internal temperature but rather its internal temperature fluctuates based on its environment and physical behaviour.

<span class="mw-page-title-main">Dormancy</span> State of minimized physical activity of an organism

Dormancy is a period in an organism's life cycle when growth, development, and physical activity are temporarily stopped. This minimizes metabolic activity and therefore helps an organism to conserve energy. Dormancy tends to be closely associated with environmental conditions. Organisms can synchronize entry to a dormant phase with their environment through predictive or consequential means. Predictive dormancy occurs when an organism enters a dormant phase before the onset of adverse conditions. For example, photoperiod and decreasing temperature are used by many plants to predict the onset of winter. Consequential dormancy occurs when organisms enter a dormant phase after adverse conditions have arisen. This is commonly found in areas with an unpredictable climate. While very sudden changes in conditions may lead to a high mortality rate among animals relying on consequential dormancy, its use can be advantageous, as organisms remain active longer and are therefore able to make greater use of available resources.

<span class="mw-page-title-main">Torpor</span> State of decreased physiological activity in an animal

Torpor is a state of decreased physiological activity in an animal, usually marked by a reduced body temperature and metabolic rate. Torpor enables animals to survive periods of reduced food availability. The term "torpor" can refer to the time a hibernator spends at low body temperature, lasting days to weeks, or it can refer to a period of low body temperature and metabolism lasting less than 24 hours, as in "daily torpor".

<span class="mw-page-title-main">Endotherm</span> Organism that maintains body temperature largely by heat from internal bodily functions

An endotherm is an organism that maintains its body at a metabolically favorable temperature, largely by the use of heat released by its internal bodily functions instead of relying almost purely on ambient heat. Such internally generated heat is mainly an incidental product of the animal's routine metabolism, but under conditions of excessive cold or low activity an endotherm might apply special mechanisms adapted specifically to heat production. Examples include special-function muscular exertion such as shivering, and uncoupled oxidative metabolism, such as within brown adipose tissue.

<span class="mw-page-title-main">Thermoregulation</span> Ability of an organism to keep its body temperature within certain boundaries

Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation. The internal thermoregulation process is one aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, maintained far from thermal equilibrium with its environment. If the body is unable to maintain a normal temperature and it increases significantly above normal, a condition known as hyperthermia occurs. Humans may also experience lethal hyperthermia when the wet bulb temperature is sustained above 35 °C (95 °F) for six hours.

<span class="mw-page-title-main">Ectotherm</span> Organism where internal heating sources are small or negligible

An ectotherm, more commonly referred to as a "cold-bloodedanimal", is an animal in which internal physiological sources of heat, such as blood, are of relatively small or of quite negligible importance in controlling body temperature. Such organisms rely on environmental heat sources, which permit them to operate at very economical metabolic rates.

Thermogenesis is the process of heat production in organisms. It occurs in all warm-blooded animals, and also in a few species of thermogenic plants such as the Eastern skunk cabbage, the Voodoo lily, and the giant water lilies of the genus Victoria. The lodgepole pine dwarf mistletoe, Arceuthobium americanum, disperses its seeds explosively through thermogenesis.

<span class="mw-page-title-main">Poikilotherm</span> Organism with considerable internal temperature variation

A poikilotherm is an animal whose internal temperature varies considerably. Poikilotherms have to survive and adapt to environmental stress. One of the most important stressors is outer environment temperature change, which can lead to alterations in membrane lipid order and can cause protein unfolding and denaturation at elevated temperatures. Poikilotherm is the opposite of homeotherm – an animal which maintains thermal homeostasis. In principle, the term could be applied to any organism, but it is generally only applied to vertebrate animals. Usually the fluctuations are a consequence of variation in the ambient environmental temperature. Many terrestrial ectotherms are poikilothermic. However some ectotherms seek constant-temperature environments to the point that they are able to maintain a constant internal temperature, and are considered actual or practical homeotherms. It is this distinction that often makes the term poikilotherm more useful than the vernacular "cold-blooded", which is sometimes used to refer to ectotherms more generally.

<span class="mw-page-title-main">Heterothermy</span> Metabolic system

Heterothermy or heterothermia is a physiological term for animals that vary between self-regulating their body temperature, and allowing the surrounding environment to affect it. In other words, they exhibit characteristics of both poikilothermy and homeothermy.

The physiology of dinosaurs has historically been a controversial subject, particularly their thermoregulation. Recently, many new lines of evidence have been brought to bear on dinosaur physiology generally, including not only metabolic systems and thermoregulation, but on respiratory and cardiovascular systems as well.

An energy budget is a balance sheet of energy income against expenditure. It is studied in the field of Energetics which deals with the study of energy transfer and transformation from one form to another. Calorie is the basic unit of measurement. An organism in a laboratory experiment is an open thermodynamic system, exchanging energy with its surroundings in three ways - heat, work and the potential energy of biochemical compounds.

<span class="mw-page-title-main">Eurytherm</span> Organism tolerant of a wide temperature range

A eurytherm is an organism, often an endotherm, that can function at a wide range of ambient temperatures. To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and larval stages. These wide ranges of tolerable temperatures are directly derived from the tolerance of a given eurythermal organism's proteins. Extreme examples of eurytherms include Tardigrades (Tardigrada), the desert pupfish, and green crabs, however, nearly all mammals, including humans, are considered eurytherms. Eurythermy can be an evolutionary advantage: adaptations to cold temperatures, called cold-eurythemy, are seen as essential for the survival of species during ice ages. In addition, the ability to survive in a wide range of temperatures increases a species' ability to inhabit other areas, an advantage for natural selection.

<i>Glanosuchus</i> Extinct genus of therapsids

Glanosuchus is a genus of scylacosaurid therocephalian from the Late Permian of South Africa. The type species G. macrops was named by Robert Broom in 1904. Glanosuchus had a middle ear structure that was intermediate between that of early therapsids and mammals. Ridges in the nasal cavity of Glanosuchus suggest it had an at least partially endothermic metabolism similar to modern mammals.

<span class="mw-page-title-main">Kleptothermy</span> Form of thermoregulation in which an animal shares in the heat production of another

In biology, kleptothermy is any form of thermoregulation by which an animal shares in the metabolic thermogenesis of another animal. It may or may not be reciprocal, and occurs in both endotherms and ectotherms. One of its forms is huddling. However, kleptothermy can happen between different species that share the same habitat, and can also happen in pre-hatching life where embryos are able to detect thermal changes in the environment.

<span class="mw-page-title-main">Mesotherm</span> Type of animal that produces metabolic heat, but has no specific body temperature

A mesotherm is a type of animal with a thermoregulatory strategy intermediate to cold-blooded ectotherms and warm-blooded endotherms.

The temperature-size rule denotes the plastic response of organismal body size to environmental temperature variation. Organisms exhibiting a plastic response are capable of allowing their body size to fluctuate with environmental temperature. First coined by David Atkinson in 1996, it is considered to be a unique case of Bergmann's rule that has been observed in plants, animals, birds, and a wide variety of ectotherms. Although exceptions to the temperature-size rule exist, recognition of this widespread "rule" has amassed efforts to understand the physiological mechanisms underlying growth and body size variation in differing environmental temperatures.

Thermal ecology is the study of the interactions between temperature and organisms. Such interactions include the effects of temperature on an organism's physiology, behavioral patterns, and relationship with its environment. While being warmer is usually associated with greater fitness, maintaining this level of heat costs a significant amount of energy. Organisms will make various trade-offs so that they can continue to operate at their preferred temperatures and optimize metabolic functions. With the emergence of climate change scientists are investigating how species will be affected and what changes they will undergo in response.

References

  1. Missell, Christine Ann (2004-04-07). Thermoregulatory adaptations of Acrocanthosaurus atokensis - evidence from oxygen isotopes (MS thesis). North Carolina State University.
  2. Fitzpatrick, Katie (2005). "Gigantothermy". Davidson College. Archived from the original on 2012-06-30. Retrieved 2011-12-21.
  3. "Big dinosaurs 'had warmer blood'". BBC News . 2006-07-11. Retrieved 2011-12-21.
  4. Seymour, Roger S. (2013-07-05). "Maximal Aerobic and Anaerobic Power Generation in Large Crocodiles versus Mammals: Implications for Dinosaur Gigantothermy". PLOS ONE. 8 (7): e69361. Bibcode:2013PLoSO...869361S. doi: 10.1371/journal.pone.0069361 . PMC   3702618 . PMID   23861968.