Warm-blooded

Last updated

Thermographic image: a cold-blooded snake is shown eating a warm-blooded mouse Wiki snake eats mouse.jpg
Thermographic image: a cold-blooded snake is shown eating a warm-blooded mouse

Warm-blooded is an informal term referring to animal species whose bodies maintain a temperature higher than that of their environment. In particular, homeothermic species (including birds and mammals) maintain a stable body temperature by regulating metabolic processes. Other species have various degrees of thermoregulation.

Contents

Because there are more than two categories of temperature control utilized by animals, the terms warm-blooded and cold-blooded have been deprecated in the scientific field.

Terminology

In general, warm-bloodedness refers to three separate categories of thermoregulation.

Varieties of thermoregulation

A significant proportion of creatures commonly referred to as "warm-blooded," like birds and mammals, exhibit all three of these categories (i.e., they are endothermic, homeothermic, and tachymetabolic). However, over the past three decades, investigations in the field of animal thermophysiology have unveiled numerous species within these two groups that do not meet all these criteria. For instance, many bats and small birds become poikilothermic and bradymetabolic during sleep (or, in nocturnal species, during the day). For such creatures, the term heterothermy was introduced.

Further examinations of animals traditionally classified as cold-blooded have revealed that most creatures manifest varying combinations of the three aforementioned terms, along with their counterparts (ectothermy, poikilothermy, and bradymetabolism), thus creating a broad spectrum of body temperature types. Some fish have warm-blooded characteristics, such as the opah. Swordfish and some sharks have circulatory mechanisms that keep their brains and eyes above ambient temperatures and thus increase their ability to detect and react to prey. [1] [2] [3] Tunas and some sharks have similar mechanisms in their muscles, improving their stamina when swimming at high speed. [4]

Heat generation

Body heat is generated by metabolism. [5] This relates to the chemical reaction in cells that break down glucose into water and carbon dioxide, thereby producing adenosine triphosphate (ATP), a high-energy compound used to power other cellular processes. Muscle contraction is one such metabolic process generating heat energy, [6] and additional heat results from friction as blood circulates through the vascular system.

All organisms metabolize food and other inputs, but some make better use of the output than others. Like all energy conversions, metabolism is rather inefficient, and around 60% of the available energy is converted to heat rather than to ATP. [7] In most organisms, this heat dissipates into the surroundings. However, endothermic homeotherms (generally referred to as "warm-blooded" animals) not only produce more heat but also possess superior means of retaining and regulating it compared to other animals. They exhibit a higher basal metabolic rate and can further increase their metabolic rate during strenuous activity. They usually have well-developed insulation in order to retain body heat: fur and blubber in the case of mammals and feathers in birds. When this insulation is insufficient to maintain body temperature, they may resort to shivering—rapid muscle contractions that quickly use up ATP, thus stimulating cellular metabolism to replace it and consequently produce more heat. Additionally, almost all eutherian mammals (with the only known exception being swine) have brown adipose tissue whose mitochondria are capable of non-shivering thermogenesis. [8] This process involves the direct dissipation of the mitochondrial gradient as heat via an uncoupling protein, thereby "uncoupling" the gradient from its usual function of driving ATP production via ATP synthase. [9]

In warm environments, these animals employ evaporative cooling to shed excess heat, either through sweating (some mammals) or by panting (many mammals and all birds)—mechanisms generally absent in poikilotherms.

Defense against fungi

It has been hypothesized that warm-bloodedness evolved in mammals and birds as a defense against fungal infections. Very few fungi can survive the body temperatures of warm-blooded animals. By comparison, insects, reptiles, and amphibians are plagued by fungal infections. [10] [11] [12] [13] Warm-blooded animals have a defense against pathogens contracted from the environment, since environmental pathogens are not adapted to their higher internal temperature. [14]

See also

Related Research Articles

<span class="mw-page-title-main">Hibernation</span> Physiological state of dormant inactivity in order to pass the winter season

Hibernation is a state of minimal activity and metabolic depression undergone by some animal species. Hibernation is a seasonal heterothermy characterized by low body-temperature, slow breathing and heart-rate, and low metabolic rate. It is most commonly used to pass through winter months – called overwintering.

<span class="mw-page-title-main">Homeothermy</span> Thermoregulation that maintains a stable internal body temperature regardless of external influence

Homeothermy, homothermy or homoiothermy is thermoregulation that maintains a stable internal body temperature regardless of external influence. This internal body temperature is often, though not necessarily, higher than the immediate environment. Homeothermy is one of the 3 types of thermoregulation in warm-blooded animal species. Homeothermy's opposite is poikilothermy. A poikilotherm is an organism that does not maintain a fixed internal temperature but rather its internal temperature fluctuates based on its environment and physical behaviour.

<span class="mw-page-title-main">Rete mirabile</span> Complex of arteries and veins lying very close to each other

A rete mirabile is a complex of arteries and veins lying very close to each other, found in some vertebrates, mainly warm-blooded ones. The rete mirabile utilizes countercurrent blood flow within the net to act as a countercurrent exchanger. It exchanges heat, ions, or gases between vessel walls so that the two bloodstreams within the rete maintain a gradient with respect to temperature, or concentration of gases or solutes. This term was coined by Galen.

<span class="mw-page-title-main">Torpor</span> State of decreased physiological activity in an animal

Torpor is a state of decreased physiological activity in an animal, usually marked by a reduced body temperature and metabolic rate. Torpor enables animals to survive periods of reduced food availability. The term "torpor" can refer to the time a hibernator spends at low body temperature, lasting days to weeks, or it can refer to a period of low body temperature and metabolism lasting less than 24 hours, as in "daily torpor".

<span class="mw-page-title-main">Endotherm</span> Organism that maintains body temperature largely by heat from internal bodily functions

An endotherm is an organism that maintains its body at a metabolically favorable temperature, largely by the use of heat released by its internal bodily functions instead of relying almost purely on ambient heat. Such internally generated heat is mainly an incidental product of the animal's routine metabolism, but under conditions of excessive cold or low activity an endotherm might apply special mechanisms adapted specifically to heat production. Examples include special-function muscular exertion such as shivering, and uncoupled oxidative metabolism, such as within brown adipose tissue.

<span class="mw-page-title-main">Thermoregulation</span> Ability of an organism to keep its body temperature within certain boundaries

Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation. The internal thermoregulation process is one aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, maintained far from thermal equilibrium with its environment. If the body is unable to maintain a normal temperature and it increases significantly above normal, a condition known as hyperthermia occurs. Humans may also experience lethal hyperthermia when the wet bulb temperature is sustained above 35 °C (95 °F) for six hours.

<span class="mw-page-title-main">Ectotherm</span> Organism where internal heating sources are small or negligible

An ectotherm, more commonly referred to as a "cold-bloodedanimal", is an animal in which internal physiological sources of heat, such as blood, are of relatively small or of quite negligible importance in controlling body temperature. Such organisms rely on environmental heat sources, which permit them to operate at very economical metabolic rates.

Thermogenesis is the process of heat production in organisms. It occurs in all warm-blooded animals, and also in a few species of thermogenic plants such as the Eastern skunk cabbage, the Voodoo lily, and the giant water lilies of the genus Victoria. The lodgepole pine dwarf mistletoe, Arceuthobium americanum, disperses its seeds explosively through thermogenesis.

<span class="mw-page-title-main">Opah</span> Genus of fishes

Opahs, also commonly known as moonfish, sunfish, cowfish , kingfish, and redfin ocean pan are large, colorful, deep-bodied pelagic lampriform fishes comprising the small family Lampridae.

<span class="mw-page-title-main">Gigantothermy</span> Form of thermoregulation by body size

Gigantothermy is a phenomenon with significance in biology and paleontology, whereby large, bulky ectothermic animals are more easily able to maintain a constant, relatively high body temperature than smaller animals by virtue of their smaller surface-area-to-volume ratio. A bigger animal has proportionately less of its body close to the outside environment than a smaller animal of otherwise similar shape, and so it gains heat from, or loses heat to, the environment much more slowly.

<span class="mw-page-title-main">Poikilotherm</span> Organism with considerable internal temperature variation

A poikilotherm is an animal whose internal temperature varies considerably. Poikilotherms have to survive and adapt to environmental stress. One of the most important stressors is outer environment temperature change, which can lead to alterations in membrane lipid order and can cause protein unfolding and denaturation at elevated temperatures. Poikilotherm is the opposite of homeotherm – an animal which maintains thermal homeostasis. In principle, the term could be applied to any organism, but it is generally only applied to vertebrate animals. Usually the fluctuations are a consequence of variation in the ambient environmental temperature. Many terrestrial ectotherms are poikilothermic. However some ectotherms seek constant-temperature environments to the point that they are able to maintain a constant internal temperature, and are considered actual or practical homeotherms. It is this distinction that often makes the term poikilotherm more useful than the vernacular "cold-blooded", which is sometimes used to refer to ectotherms more generally.

<span class="mw-page-title-main">Heterothermy</span> Metabolic system

Heterothermy or heterothermia is a physiological term for animals that vary between self-regulating their body temperature, and allowing the surrounding environment to affect it. In other words, they exhibit characteristics of both poikilothermy and homeothermy.

The physiology of dinosaurs has historically been a controversial subject, particularly their thermoregulation. Recently, many new lines of evidence have been brought to bear on dinosaur physiology generally, including not only metabolic systems and thermoregulation, but on respiratory and cardiovascular systems as well.

Thermogenic plants have the ability to raise their temperature above that of the surrounding air. Heat is generated in the mitochondria, as a secondary process of cellular respiration called thermogenesis. Alternative oxidase and uncoupling proteins similar to those found in mammals enable the process, which is still poorly understood.

<span class="mw-page-title-main">Eurytherm</span> Organism tolerant of a wide temperature range

A eurytherm is an organism, often an endotherm, that can function at a wide range of ambient temperatures. To be considered a eurytherm, all stages of an organism's life cycle must be considered, including juvenile and larval stages. These wide ranges of tolerable temperatures are directly derived from the tolerance of a given eurythermal organism's proteins. Extreme examples of eurytherms include Tardigrades (Tardigrada), the desert pupfish, and green crabs, however, nearly all mammals, including humans, are considered eurytherms. Eurythermy can be an evolutionary advantage: adaptations to cold temperatures, called cold-eurythemy, are seen as essential for the survival of species during ice ages. In addition, the ability to survive in a wide range of temperatures increases a species' ability to inhabit other areas, an advantage for natural selection.

Endothermic organisms known as homeotherms maintain internal temperatures with minimal metabolic regulation within a range of ambient temperatures called the thermal neutral zone (TNZ). Within the TNZ the basal rate of heat production is equal to the rate of heat loss to the environment. Homeothermic organisms adjust to the temperatures within the TNZ through different responses requiring little energy.

<i>Glanosuchus</i> Extinct genus of therapsids

Glanosuchus is a genus of scylacosaurid therocephalian from the Late Permian of South Africa. The type species G. macrops was named by Robert Broom in 1904. Glanosuchus had a middle ear structure that was intermediate between that of early therapsids and mammals. Ridges in the nasal cavity of Glanosuchus suggest it had an at least partially endothermic metabolism similar to modern mammals.

<span class="mw-page-title-main">Kleptothermy</span> Form of thermoregulation in which an animal shares in the heat production of another

In biology, kleptothermy is any form of thermoregulation by which an animal shares in the metabolic thermogenesis of another animal. It may or may not be reciprocal, and occurs in both endotherms and ectotherms. One of its forms is huddling. However, kleptothermy can happen between different species that share the same habitat, and can also happen in pre-hatching life where embryos are able to detect thermal changes in the environment.

<span class="mw-page-title-main">Insect thermoregulation</span> Insect body temperature regulation

Insect thermoregulation is the process whereby insects maintain body temperatures within certain boundaries. Insects have traditionally been considered as poikilotherms as opposed to being homeothermic. However, the term temperature regulation, or thermoregulation, is currently used to describe the ability of insects and other animals to maintain a stable temperature, at least in a portion of their bodies by physiological or behavioral means. While many insects are ectotherms, others are endotherms. These endothermic insects are better described as regional heterotherms because they are not uniformly endothermic. When heat is being produced, different temperatures are maintained in different parts of their bodies, for example, moths generate heat in their thorax prior to flight but the abdomen remains relatively cool.

<span class="mw-page-title-main">Mesotherm</span> Type of animal that produces metabolic heat, but has no specific body temperature

A mesotherm is a type of animal with a thermoregulatory strategy intermediate to cold-blooded ectotherms and warm-blooded endotherms.

References

Footnotes

  1. Greek: ἔνδον endon "within" θέρμη thermē "heat"
  2. Greek: ὅμοιος homoios "similar", θέρμη thermē "heat"
  3. Greek: ταχύς tachys or tachus "fast, swift", μεταβάλλεινmetaballein "turn quickly"

Citations

  1. Hot Eyes for Cold Fish – Wong 2005 (110): 2 – ScienceNOW
  2. Block, B.A. & Carey, F.G. (March 1985). "Warm brain and eye temperatures in sharks". Journal of Comparative Physiology B. 156 (2): 229–36. doi:10.1007/BF00695777. PMID   3836233. S2CID   33962038.
  3. "Warm eyes give deep-sea predators super vision". University of Queensland. 11 January 2005.
  4. McFarlane, P. (January 1999). "Warm-Blooded Fish". Monthly Bulletin of the Hamilton and District Aquarium Society. Archived from the original on 15 May 2013. Retrieved 31 May 2008.
  5. Yousef, Hani; Ramezanpour Ahangar, Edris; Varacallo, Matthew (2024), "Physiology, Thermal Regulation", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   29763018 , retrieved 28 February 2024
  6. Periasamy, Muthu; Herrera, Jose Luis; Reis, Felipe C. G. (24 October 2017). "Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism". Diabetes & Metabolism Journal. 41 (5): 327–336. doi:10.4093/dmj.2017.41.5.327. PMC   5663671 . PMID   29086530.
  7. Macherel, David; Haraux, Francis; Guillou, Hervé; Bourgeois, Olivier (1 February 2021). "The conundrum of hot mitochondria" (PDF). Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1862 (2): 148348. doi: 10.1016/j.bbabio.2020.148348 . ISSN   0005-2728. PMID   33248118.
  8. Berg, Frida; Gustafson, Ulla; Andersson, Leif (18 August 2006). "The Uncoupling Protein 1 Gene (UCP1) Is Disrupted in the Pig Lineage: A Genetic Explanation for Poor Thermoregulation in Piglets". PLOS Genetics. 2 (8): e129. doi: 10.1371/journal.pgen.0020129 . ISSN   1553-7404. PMC   1550502 . PMID   16933999.
  9. Cannon, Barbara; Nedergaard, Jan (1 January 2004). "Brown Adipose Tissue: Function and Physiological Significance". Physiological Reviews. 84 (1): 277–359. doi:10.1152/physrev.00015.2003. ISSN   0031-9333. PMID   14715917.
  10. Dunn, Rob (2011). "Killer Fungi Made us Hotblooded". New Scientist. Retrieved 27 April 2016.(subscription required)
  11. Aviv Bergman, Arturo Casadevall. 2010. Mammalian Endothermy Optimally Restricts Fungi and Metabolic Costs. mBio Nov 2010, 1 (5) e00212-10. doi : 10.1128/mBio.00212-10
  12. Vincent A. Robert, Arturo Casadevall. 2009. Vertebrate Endothermy Restricts Most Fungi as Potential Pathogens. The Journal of Infectious Diseases , Volume 200, Issue 10, 15 November 2009, Pages 1623–1626. doi : 10.1086/644642
  13. Casadevall A (2012) Fungi and the Rise of Mammals. PLoS Pathog 8(8): e1002808. doi : 10.1371/journal.ppat.1002808
  14. Robert, Vincent A.; Casadevall, Arturo (15 November 2009). "Vertebrate Endothermy Restricts Most Fungi as Potential Pathogens". The Journal of Infectious Diseases . 200 (10): 1623–1626. doi: 10.1086/644642 . ISSN   0022-1899. PMID   19827944.