Uncoupling protein

Last updated
Structure of the human uncoupling protein UCP1 Structure of the human uncoupling protein.png
Structure of the human uncoupling protein UCP1

An uncoupling protein (UCP) is a mitochondrial inner membrane protein that is a regulated proton channel or transporter. An uncoupling protein is thus capable of dissipating the proton gradient generated by NADH-powered pumping of protons from the mitochondrial matrix to the mitochondrial intermembrane space. The energy lost in dissipating the proton gradient via UCPs is not used to do biochemical work. Instead, heat is generated. This is what links UCP to thermogenesis. However, not every type of UCPs are related to thermogenesis. Although UCP2 and UCP3 are closely related to UCP1, UCP2 and UCP3 do not affect thermoregulatory abilities of vertebrates. [1] UCPs are positioned in the same membrane as the ATP synthase, which is also a proton channel. The two proteins thus work in parallel with one generating heat and the other generating ATP from ADP and inorganic phosphate, the last step in oxidative phosphorylation. [2] Mitochondria respiration is coupled to ATP synthesis (ADP phosphorylation), but is regulated by UCPs. [3] [4] UCPs belong to the mitochondrial carrier (SLC25) family. [5] [6]

Contents

Uncoupling proteins play a role in normal physiology, as in cold exposure or hibernation, because the energy is used to generate heat (see thermogenesis) instead of producing ATP. Some plants species use the heat generated by uncoupling proteins for special purposes. Eastern skunk cabbage, for example, keeps the temperature of its spikes as much as 20 °C higher than the environment, spreading odor and attracting insects that fertilize the flowers. [7] However, other substances, such as 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl hydrazone, also serve the same uncoupling function. Salicylic acid is also an uncoupling agent (chiefly in plants) and will decrease production of ATP and increase body temperature if taken in extreme excess. [8] Uncoupling proteins are increased by thyroid hormone, norepinephrine, epinephrine, and leptin. [9]

History

Scientists observed the thermogenic activity in brown adipose tissue, which eventually led to the discovery of UCP1, initially known as "Uncoupling Protein". [3] [4] The brown tissue revealed elevated levels of mitochondria respiration and another respiration not coupled to ATP synthesis, which symbolized strong thermogenic activity. [3] [4] UCP1 was the protein discovered responsible for activating a proton pathway that was not coupled to ADP phosphorylation (ordinarily done through ATP Synthase). [3]

In mammals

There are five UCP homologs known in mammals. While each of these performs unique functions, certain functions are performed by several of the homologs. The homologs are as follows:

Maintaining body temperature

The first uncoupling protein discovered, UCP1, was discovered in the brown adipose tissues of hibernators and small rodents, which provide non-shivering heat to these animals. [3] [4] These brown adipose tissues are essential to maintaining the body temperature of small rodents, and studies with (UCP1)-knockout mice show that these tissues do not function correctly without functioning uncoupling proteins. [3] [4] In fact, these studies revealed that cold-acclimation is not possible for these knockout mice, indicating that UCP1 is an essential driver of heat production in these brown adipose tissues. [10] [11]

Elsewhere in the body, uncoupling protein activities are known to affect the temperature in micro-environments. [12] [13] This is believed to affect other proteins' activity in these regions, though work is still required to determine the true consequences of uncoupling-induced temperature gradients within cells. [12]

The structure of human uncoupling protein 1 UCP1 has been solved by cryogenic-electron microscopy. [14] The structure has the typical fold of a member of the SLC25 family. [5] [6] UCP1 is locked in a cytoplasmic-open state by guanosine triphosphate in a pH-dependent manner. [14]

Role in ATP concentrations

The effect of UCP2 and UCP3 on ATP concentrations varies depending on cell type. [12] For example, pancreatic beta cells experience a decrease in ATP concentration with increased activity of UCP2. [12] This is associated with cell degeneration, decreased insulin secretion, and type II diabetes. [12] [15] Conversely, UCP2 in hippocampus cells and UCP3 in muscle cells stimulate production of mitochondria. [12] [16] The larger number of mitochondria increases the combined concentration of ADP and ATP, actually resulting in a net increase in ATP concentration when these uncoupling proteins become coupled (i.e. the mechanism to allow proton leaking is inhibited). [12] [16]

Maintaining concentration of reactive oxygen species

The entire list of functions of UCP2 and UCP3 is not known. [17] However, studies indicate that these proteins are involved in a negative-feedback loop limiting the concentration of reactive oxygen species (ROS). [18] Current scientific consensus states that UCP2 and UCP3 perform proton transportation only when activation species are present. [19] Among these activators are fatty acids, ROS, and certain ROS byproducts that are also reactive. [18] [19] Therefore, higher levels of ROS directly and indirectly cause increased activity of UCP2 and UCP3. [18] This, in turn, increases proton leak from the mitochondria, lowering the proton-motive force across mitochondrial membranes, activating the electron transport chain. [17] [18] [19] Limiting the proton motive force through this process results in a negative feedback loop that limits ROS production. [18] Especially, UCP2 decreases the transmembrane potential of mitochondria, thus decreasing the production of ROS. Thus, cancer cells may increase the production of UCP2 in mitochondria. [20] This theory is supported by independent studies which show increased ROS production in both UCP2 and UCP3 knockout mice. [19]

This process is important to human health, as high-concentrations of ROS are believed to be involved in the development of degenerative diseases. [19]

Functions in neurons

This diagram shows the location of UCP1 with respect to the electron transport chain. UCP1 in the cell.jpg
This diagram shows the location of UCP1 with respect to the electron transport chain.

By detecting the associated mRNA, UCP2, UCP4, and UCP5 were shown to reside in neurons throughout the human central nervous system. [22] These proteins play key roles in neuronal function. [12] While many study findings remain controversial, several findings are widely accepted. [12]

For example, UCPs alter the free calcium concentrations in the neuron. [12] Mitochondria are a major site of calcium storage in neurons, and the storage capacity increases with potential across mitochondrial membranes. [12] [23] Therefore, when the uncoupling proteins reduce potential across these membranes, calcium ions are released to the surrounding environment in the neuron. [12] Due to the high concentrations of mitochondria near axon terminals, this implies UCPs play a role in regulating calcium concentrations in this region. [12] Considering calcium ions play a large role in neurotransmission, scientists predict that these UCPs directly affect neurotransmission. [12]

As discussed above, neurons in the hippocampus experience increased concentrations of ATP in the presence of these uncoupling proteins. [12] [16] This leads scientists to hypothesize that UCPs improve synaptic plasticity and transmission. [12]


See also

Related Research Articles

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase coined by Philip Siekevitz in a 1957 article of the same name.

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

<span class="mw-page-title-main">Electron transport chain</span> Energy-producing metabolic pathway

An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. The electrons that are transferred from NADH and FADH2 to the ETC involves four multi-subunit large enzymes complexes and two mobile electron carriers. Many of the enzymes in the electron transport chain are embedded within the membrane.

<span class="mw-page-title-main">Crista</span> Fold in the inner membrane of a mitochondrion

A crista is a fold in the inner membrane of a mitochondrion. The name is from the Latin for crest or plume, and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on. This aids aerobic cellular respiration, because the mitochondrion requires oxygen. Cristae are studded with proteins, including ATP synthase and a variety of cytochromes.

<span class="mw-page-title-main">Thermogenin</span> Mammalian protein found in Homo sapiens

Thermogenin is a mitochondrial carrier protein found in brown adipose tissue (BAT). It is used to generate heat by non-shivering thermogenesis, and makes a quantitatively important contribution to countering heat loss in babies which would otherwise occur due to their high surface area-volume ratio.

Thermogenesis is the process of heat production in organisms. It occurs in all warm-blooded animals, and also in a few species of thermogenic plants such as the Eastern skunk cabbage, the Voodoo lily, and the giant water lilies of the genus Victoria. The lodgepole pine dwarf mistletoe, Arceuthobium americanum, disperses its seeds explosively through thermogenesis.

SERCA, or sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, or SR Ca2+-ATPase, is a calcium ATPase-type P-ATPase. Its major function is to transport calcium from the cytosol into the sarcoplasmic reticulum.

<span class="mw-page-title-main">Inner mitochondrial membrane</span>

The inner mitochondrial membrane (IMM) is the mitochondrial membrane which separates the mitochondrial matrix from the intermembrane space.

The mitochondrial permeability transition pore is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 Daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition, can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting.

<span class="mw-page-title-main">Mitochondrial membrane transport protein</span>

Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the membranes of mitochondria. They serve to transport molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane, separated by the inter-membrane space, or inner boundary membrane. The outer membrane is porous, whereas the inner membrane restricts the movement of all molecules. The two membranes also vary in membrane potential and pH. These factors play a role in the function of mitochondrial membrane transport proteins. There are 53 discovered human mitochondrial membrane transporters, with many others that are known to still need discovered.

<span class="mw-page-title-main">Adenine nucleotide translocator</span> Class of transport proteins

Adenine nucleotide translocator (ANT), also known as the ADP/ATP translocase (ANT), ADP/ATP carrier protein (AAC) or mitochondrial ADP/ATP carrier, exchanges free ATP with free ADP across the inner mitochondrial membrane. ANT is the most abundant protein in the inner mitochondrial membrane and belongs to mitochondrial carrier family.

<span class="mw-page-title-main">Mitochondrial carrier</span>

Mitochondrial carriers are proteins from solute carrier family 25 which transfer molecules across the membranes of the mitochondria. Mitochondrial carriers are also classified in the Transporter Classification Database. The Mitochondrial Carrier (MC) Superfamily has been expanded to include both the original Mitochondrial Carrier (MC) family and the Mitochondrial Inner/Outer Membrane Fusion (MMF) family.

<span class="mw-page-title-main">UCP2</span> Protein-coding gene in the species Homo sapiens

Mitochondrial uncoupling protein 2 is a protein that in humans is encoded by the UCP2 gene.

<span class="mw-page-title-main">UCP3</span> Protein-coding gene in the species Homo sapiens

Mitochondrial uncoupling protein 3 is a protein that in humans is encoded by the UCP3 gene. The gene is located in chromosome (11q13.4) with an exon count of 7 and is expressed on the inner mitochondrial membrane. Uncoupling proteins transfer anions from the inner mitochondrial membrane to the outer mitochondrial membrane, thereby separating oxidative phosphorylation from synthesis of ATP, and dissipating energy stored in the mitochondrial membrane potential as heat. Uncoupling proteins also reduce generation of reactive oxygen species.

<span class="mw-page-title-main">Sirtuin 3</span> Protein-coding gene in the species Homo sapiens

NAD-dependent deacetylase sirtuin-3, mitochondrial also known as SIRT3 is a protein that in humans is encoded by the SIRT3 gene [sirtuin 3 ]. SIRT3 is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein. SIRT3 exhibits NAD+-dependent deacetylase activity.

<span class="mw-page-title-main">Brain mitochondrial carrier protein 1</span> Protein-coding gene in the species Homo sapiens

Brain mitochondrial carrier protein 1 is a protein that in humans is encoded by the SLC25A14 gene.

<span class="mw-page-title-main">Mitochondrial uncoupling protein 4</span> Protein-coding gene in the species Homo sapiens

Mitochondrial uncoupling protein 4 is a protein that in humans is encoded by the SLC25A27 gene.

<span class="mw-page-title-main">Mitochondrial theory of ageing</span> Theory of ageing

The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 and was developed in the works of Linnane and coworkers (1989). The second was proposed by A. N. Lobachev in 1978.

<span class="mw-page-title-main">Daniel Ricquier</span> French biochemist

Daniel Ricquier, is a French biochemist known for his work in mitochondria and hereditary metabolic diseases. Ricquier has been a member of the French Academy of Sciences since 2002, and a professor of biochemistry and Molecular Biology at the Faculty of Medicine of the University of Paris Descartes since 2003.

The citrate-malate shuttle is a series of chemical reactions – commonly referred to as a biochemical cycle or system – that transports acetyl-CoA in the mitochondrial matrix across the inner and outer mitochondrial membrane for fatty acid synthesis. Mitochondria is enclosed in a double membrane. As the inner mitochondrial membrane is impermeable to acetyl-CoA, the shuttle system is essential to fatty acid synthesis in the cytosol. It plays an important role in the generation of lipids in the liver.

References

  1. Gaudry MJ, Jastroch M (March 2019). "Molecular evolution of uncoupling proteins and implications for brain function". Neuroscience Letters. 696: 140–145. doi:10.1016/j.neulet.2018.12.027. PMID   30582970. S2CID   56595077.
  2. Nedergaard J, Ricquier D, Kozak LP (October 2005). "Uncoupling proteins: current status and therapeutic prospects". EMBO Reports. 6 (10): 917–21. doi:10.1038/sj.embor.7400532. PMC   1369193 . PMID   16179945.
  3. 1 2 3 4 5 6 Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (February 2004). "The biology of mitochondrial uncoupling proteins". Diabetes. 53 (suppl 1): S130-5. doi: 10.2337/diabetes.53.2007.S130 . PMID   14749278.
  4. 1 2 3 4 5 Nicholls, D.G. (2021). "Mitochondrial proton leaks and uncoupling proteins". Biochim Biophys Acta Bioenerg. 1862 (7): 148428. doi:10.1016/j.bbabio.2021.148428. PMID   33798544. S2CID   232774851.
  5. 1 2 Ruprecht, J.J.; Kunji, E.R.S. (2020). "The SLC25 Mitochondrial Carrier Family: Structure and Mechanism". Trends Biochem. Sci. 45 (3): 244–258. doi:10.1016/j.tibs.2019.11.001. PMC   7611774 . PMID   31787485.
  6. 1 2 Kunji, E.R.S.; King, M.S.; Ruprecht, J.J.; Thangaratnarajah, C. (2020). "The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology". Physiology (Bethesda). 35 (5): 302–327. doi:10.1152/physiol.00009.2020. PMC   7611780 . PMID   32783608.
  7. Garrett RH, Grisham CM (2013). Biochemistry (Fifth Edition, International ed.). China: Mary Finch. p. 668. ISBN   978-1-133-10879-5.
  8. "California Poison Control System: Salicylates". Archived from the original on 2014-08-02.
  9. Gong DW, He Y, Karas M, Reitman M (September 1997). "Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin". The Journal of Biological Chemistry. 272 (39): 24129–32. doi: 10.1074/jbc.272.39.24129 . PMID   9305858.
  10. Hagen T, Vidal-Puig A (February 2002). "Mitochondrial uncoupling proteins in human physiology and disease". Minerva Medica. 93 (1): 41–57. PMID   11850613.
  11. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (February 2009). "UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality". Cell Metabolism. 9 (2): 203–9. doi: 10.1016/j.cmet.2008.12.014 . PMID   19187776.
  12. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Andrews ZB, Diano S, Horvath TL (November 2005). "Mitochondrial uncoupling proteins in the CNS: in support of function and survival". Nature Reviews. Neuroscience. 6 (11): 829–40. doi:10.1038/nrn1767. PMID   16224498. S2CID   14840725.
  13. Horvath TL, Warden CH, Hajos M, Lombardi A, Goglia F, Diano S (December 1999). "Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers". The Journal of Neuroscience. 19 (23): 10417–27. doi:10.1523/JNEUROSCI.19-23-10417.1999. PMC   6782406 . PMID   10575039.
  14. 1 2 Jones, S.A.; Gogoi, P.; Ruprecht, J.J.; King, M.S.; Lee, Y.; Zogg, T.; Pardon, E.; Chand, D.; Steel, S.; Coperman, D.M.; Cotrim, C.A.; Steyaert, J.; Crichton, P.G.; Moiseenkova-Bell, V.; Kunji, E.R.S. (2023). "Structural basis of purine nucleotide inhibition of human uncoupling protein 1". Sci Adv. 9 (22): eadh4251. Bibcode:2023SciA....9H4251J. doi:10.1126/sciadv.adh4251. PMC   10413660 . PMID   37256948.
  15. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, et al. (June 2001). "Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes". Cell. 105 (6): 745–55. doi: 10.1016/s0092-8674(01)00378-6 . PMID   11440717.
  16. 1 2 3 Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (November 2003). "Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning". Endocrinology. 144 (11): 5014–21. doi: 10.1210/en.2003-0667 . PMID   12960023.
  17. 1 2 Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD (2010-06-14). "Mitochondrial proton and electron leaks". Essays in Biochemistry. 47: 53–67. doi:10.1042/bse0470053. PMC   3122475 . PMID   20533900.
  18. 1 2 3 4 5 Mailloux RJ, Harper ME (September 2011). "Uncoupling proteins and the control of mitochondrial reactive oxygen species production". Free Radical Biology & Medicine. 51 (6): 1106–15. doi:10.1016/j.freeradbiomed.2011.06.022. PMID   21762777.
  19. 1 2 3 4 5 Brand MD, Esteves TC (August 2005). "Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3". Cell Metabolism. 2 (2): 85–93. doi: 10.1016/j.cmet.2005.06.002 . PMID   16098826.
  20. Sreedhar A, Zhao Y (May 2017). "Uncoupling protein 2 and metabolic diseases". Mitochondrion. 34: 135–140. doi:10.1016/j.mito.2017.03.005. PMC   5477468 . PMID   28351676.
  21. Crichton, P.G.; Lee, Y.; Kunji, E.R.S. (2017). "The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism". Biochimie. 134: 35–50. doi:10.1016/j.biochi.2016.12.016. PMC   5395090 . PMID   28057583.
  22. Richard D, Clavel S, Huang Q, Sanchis D, Ricquier D (November 2001). "Uncoupling protein 2 in the brain: distribution and function". Biochemical Society Transactions. 29 (Pt 6): 812–7. doi:10.1042/bst0290812. PMID   11709080.
  23. Nicholls DG, Ward MW (April 2000). "Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts". Trends in Neurosciences. 23 (4): 166–74. doi:10.1016/s0166-2236(99)01534-9. PMID   10717676. S2CID   11564585.