This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Need to explain the deletion of EC due to being "covered by EC 7.1.1.2" (the ubiquinone one). Such a merge makes sense for some proteins tagged with that EC, but definitely does not make sense for this article.(April 2022) |
NADH dehydrogenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 7.1.1.2 | ||||||||
CAS no. | 9079-67-8 | ||||||||
Alt. names | cytochrome c reductase, type 1 dehydrogenase, beta-NADH dehydrogenase dinucleotide, diaphorase, dihydrocodehydrogenase I dehydrogenase, dihydronicotinamide adenine dinucleotide dehydrogenase, diphosphopyridine diaphorase, DPNH diaphorase, NADH diaphorase, NADH hydrogenase, NADH oxidoreductase, NADH-menadione oxidoreductase, reduced diphosphopyridine nucleotide diaphorase [1] | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
NADH dehydrogenase is an enzyme that converts nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) to its oxidized form (NAD+). Members of the NADH dehydrogenase family and analogues are commonly systematically named using the format NADH:acceptor oxidoreductase. [2] [3] [4] [5] The chemical reaction these enzymes catalyze is generally represented with the following equation:
NADH dehydrogenase is a flavoprotein that contains iron-sulfur centers.
NADH dehydrogenase is used in the electron transport chain for generation of ATP.
The EC term NADH dehydrogenase (quinone) (EC 1.6.5.11) is defined for NADH dehydrogenases that use a quinone (excluding ubiquinone) as the acceptor. The EC term NADH dehydrogenase (ubiquinone) (EC 7.1.1.2) is defined for those with ubiquinone as the acceptor.
Respiratory complex I, EC 7.1.1.2 is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.
Nitrate reductase (NADH) (EC 1.7.1.1, assimilatory nitrate reductase, NADH-nitrate reductase, NADH-dependent nitrate reductase, assimilatory NADH: nitrate reductase, nitrate reductase (NADH2), NADH2:nitrate oxidoreductase) is an enzyme with systematic name nitrite:NAD+ oxidoreductase. This enzyme catalyzes the following chemical reaction
In enzymology, a D-threo-aldose 1-dehydrogenase (EC 1.1.1.122) is an enzyme that catalyzes the chemical reaction
In enzymology, a (R,R)-butanediol dehydrogenase (EC 1.1.1.4) is an enzyme that catalyzes the chemical reaction
In enzymology, a glucose 1-dehydrogenase (NAD+) (EC 1.1.1.118) is an enzyme that catalyzes the chemical reaction
In enzymology, a 2-alkyn-1-ol dehydrogenase (EC 1.1.1.165) is an enzyme that catalyzes the chemical reaction below:
In enzymology, a 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) is an enzyme that catalyzes the chemical reaction
In enzymology, a 7alpha-hydroxysteroid dehydrogenase (EC 1.1.1.159) is an enzyme that catalyzes the chemical reaction
In enzymology, a (S,S)-butanediol dehydrogenase (EC 1.1.1.76) is an enzyme that catalyzes the chemical reaction
In enzymology, a glucose 1-dehydrogenase is an enzyme that catalyzes the chemical reaction
In enzymology, a glycolate dehydrogenase is an enzyme that catalyzes the chemical reaction
In enzymology, a malate dehydrogenase (quinone) (EC 1.1.5.4), formerly malate dehydrogenase (acceptor) (EC 1.1.99.16), is an enzyme that catalyzes the chemical reaction
In enzymology, a hydrogen dehydrogenase (EC 1.12.1.2) is an enzyme that catalyzes the chemical reaction
Alanine dehydrogenase (EC 1.4.1.1) is an enzyme that catalyzes the chemical reaction
In enzymology, a hypotaurine dehydrogenase (EC 1.8.1.3) is an enzyme that catalyzes the chemical reaction
In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction
NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial, also knowns as NADH-ubiquinone oxidoreductase 20 kDa subunit, Complex I-20kD (CI-20kD), or PSST subunit is an enzyme that in humans is encoded by the NDUFS7 gene. The NDUFS7 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.
Pyruvate dehydrogenase (quinone) (EC 1.2.5.1, pyruvate dehydrogenase, pyruvic dehydrogenase, pyruvic (cytochrome b1) dehydrogenase, pyruvate:ubiquinone-8-oxidoreductase, pyruvate oxidase (ambiguous)) is an enzyme with systematic name pyruvate:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction
NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:
NDH-2, also known as type II NADH:quinone oxidoreductase or alternative NADH dehydrogenase, is an enzyme which catalyzes the electron transfer from NADH to a quinone, being part of the electron transport chain. NDH-2 are peripheral membrane protein, functioning as dimers in vivo, with approximately 45 KDa per subunit and a single FAD as their cofactor.