Cytochrome P450 reductase

Last updated
POR
Protein POR PDB 1amo.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases POR , CPR, CYP450R, cytochrome p450 oxidoreductase, P450 oxidoreductase
External IDs OMIM: 124015 MGI: 97744 HomoloGene: 725 GeneCards: POR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000941
NM_001367562

NM_008898

RefSeq (protein)

NP_032924

Location (UCSC) Chr 7: 75.9 – 75.99 Mb Chr 5: 135.7 – 135.76 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cytochrome P450 reductase (also known as NADPH:ferrihemoprotein oxidoreductase, NADPH:hemoprotein oxidoreductase, NADPH:P450 oxidoreductase, P450 reductase, POR, CPR, CYPOR) is a membrane-bound enzyme required for electron transfer from NADPH to cytochrome P450 [5] and other heme proteins including heme oxygenase in the endoplasmic reticulum [6] of the eukaryotic cell.

Contents

Gene

Human POR gene has 16 exons and the exons 2-16 code for a 677-amino acid [7] POR protein (NCBI NP_000932.2). There is a single copy of 50 kb POR gene (NCBI NM_000941.2) in humans on chromosome 7 (7q11.23).

Paralogs of POR include nitric oxide synthase (EC 1.14.13.39), NADPH:sulfite reductase (EC 1.8.1.2), and methionine synthase reductase (EC 1.16.1.8).[ citation needed ]

Protein structure

The 3D crystal structure of human POR has been determined. [8] The molecule is composed of four structural domains: the FMN-binding domain, the connecting domain, the FAD-binding domain, and NADPH-binding domain. The FMN-binding domain is similar to the structure of FMN-containing protein flavodoxin, whereas the FAD-binding domain and NADPH-binding domains are similar to those of flavoprotein ferredoxin-NADP+ reductase (FNR). The connecting domain is situated between the flavodoxin-like and FNR-like domains. Conformation flexibility of POR is a key requirement for interaction with different redox partners like Cytochrome P450 proteins, and biasing the conformation of POR with small molecule ligands may be a way to control interaction with partner proteins and influence metabolism. [9]

Function

In Bacillus megaterium and Bacillus subtilis, POR is a C-terminal domain of CYP102, a single-polypeptide self-sufficient soluble P450 system (P450 is an N-terminal domain). The general scheme of electron flow in the POR/P450 system is:

NADPH → FAD → FMN → P450 → O2

The definitive evidence for the requirement of POR in cytochrome-P450-mediated reactions came from the work of Lu, Junk and Coon, [10] who dissected the P450-containing mixed function oxidase system into three constituent components: POR, cytochrome P450, and lipids.

Since all microsomal P450 enzymes require POR for catalysis, it is expected that disruption of POR would have devastating consequences. POR knockout mice are embryonic lethal, [11] probably due to lack of electron transport to extrahepatic P450 enzymes since liver-specific knockout of POR yields phenotypically and reproductively normal mice that accumulate hepatic lipids and have remarkably diminished capacity of hepatic drug metabolism. [12]

The reduction of cytochrome P450 is not the only physiological function of POR. The final step of heme oxidation by mammalian heme oxygenase requires POR and O2. In yeast, POR affects the ferrireductase activity, probably transferring electrons to the flavocytochrome ferric reductase. [13]

Clinical significance

More than 200 variations in POR gene have been identified. [14] [15]

Five missense mutations (A287P, R457H, V492E, C569Y, and V608F) and a splicing mutation in the POR genes have been found in patients who had hormonal evidence for combined deficiencies of two steroidogenic cytochrome P450 enzymes - P450c17 CYP17A1, which catalyzes steroid 17α-hydroxylation and 17,20 lyase reaction, and P450c21 21-hydroxylase, which catalyzes steroid 21-hydroxylation. [16] Another POR missense mutation Y181D has also been identified. [17] Fifteen of nineteen patients having abnormal genitalia and disordered steroidogenesis were homozygous or apparent compound heterozygous for POR mutations that destroyed or dramatically inhibited POR activity. [18]

POR Deficiency – Mixed Oxidase Disease

POR deficiency is the newest form of congenital adrenal hyperplasia first described in 2004. [16] The index patient was a newborn 46,XX Japanese girl with craniosynostosis, hypertelorism, mid-face hypoplasia, radiohumeral synostosis, arachnodactyly and disordered steroidogenesis. However, the clinical and biochemical characteristics of patients with POR deficiency are long known in the literature as so-called mixed oxidase disease, as POR deficiency typically shows a steroid profile that suggests combined deficiencies of steroid 21-hydroxylase and 17α-hydroxylase/17,20 lyase activities. The clinical spectrum of POR deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency, and the Antley-Bixler skeletal malformation syndrome (ABS) to mildly affected individuals with polycystic ovary syndrome-like features. Some of the POR patients were born to mothers who became virilized during pregnancy, suggesting deficient placental aromatization of fetal androgens due to a lesion in microsomal aromatase resulting in low estrogen production, which was later confirmed by lower aromatase activities caused by POR mutations. [19] [20] However, it has also been suggested that fetal and maternal virilization in POR deficiency might be caused by increased dihydrotestosterone synthesis by the fetal gonad through an alternative "backdoor pathway" first described in the marsupials and later confirmed in humans. [21] Gas chromatography/mass spectrometry analysis of urinary steroids from pregnant women carrying a POR-deficient fetus described in an earlier report also supports the existence of this pathway, [22] [23] and the relevance of the backdoor pathway along with POR dependent steroidogenesis have become clearer from recent studies. [21] The role of POR mutations beyond CAH are being investigated; and questions such as how POR mutations cause bony abnormalities and what role POR variants play in drug metabolism by hepatic P450s are being addressed in recent publications. [24] [25] [26] [27] [28] However, reports of ABS in some offspring of mothers who were treated with fluconazole, an antifungal agent which interferes with cholesterol biosynthesis at the level of CYP51 activity - indicate that disordered drug metabolism may result from deficient POR activity. [29]

Williams syndrome

Williams syndrome is a genetic disorder characterized by the deletion of genetic material approximately 1.2 Mb from the POR gene (POR). Cells with this genetic deletion show reduced transcription of POR, it seems, due to the loss of a cis-regulatory element that alters expression of this gene. [30] Some persons with Williams syndrome show characteristics of POR deficiency, including radioulnar synostosis and other skeletal abnormalities. [31] Cases of mild impairment of cortisol and androgen synthesis have been noted, [32] however, despite the fact that deficient POR impairs androgen synthesis, patients with Williams syndrome often show increased androgen levels. [33] A similar increase in testosterone has been observed in a mouse model that has globally decreased POR expression. [34]

See also

Related Research Articles

Israel Hanukoglu is a Turkish-born Israeli scientist. He is a full professor of biochemistry and molecular biology at Ariel University and former science and technology adviser to the prime minister of Israel (1996–1999). He is founder of Israel Science and Technology Directory.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17α-hydroxylase. It causes decreased synthesis of cortisol and sex steroids, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild hypocortisolism, ambiguous genitalia in genetic males or failure of the ovaries to function at puberty in genetic females, and hypokalemic hypertension (respectively). However, partial (incomplete) deficiency is notable for having inconsistent symptoms between patients, and affected genetic (XX) females may be wholly asymptomatic except for infertility.

<span class="mw-page-title-main">Flavoprotein</span> Protein family

Flavoproteins are proteins that contain a nucleic acid derivative of riboflavin. These proteins are involved in a wide array of biological processes, including removal of radicals contributing to oxidative stress, photosynthesis, and DNA repair. The flavoproteins are some of the most-studied families of enzymes.

<span class="mw-page-title-main">CYP17A1</span> Mammalian protein found in Homo sapiens

Cytochrome P450 17A1 is an enzyme of the hydroxylase type that in humans is encoded by the CYP17A1 gene on chromosome 10. It is ubiquitously expressed in many tissues and cell types, including the zona reticularis and zona fasciculata of the adrenal cortex as well as gonadal tissues. It has both 17α-hydroxylase and 17,20-lyase activities, and is a key enzyme in the steroidogenic pathway that produces progestins, mineralocorticoids, glucocorticoids, androgens, and estrogens. More specifically, the enzyme acts upon pregnenolone and progesterone to add a hydroxyl (-OH) group at carbon 17 position (C17) of the steroid D ring, or acts upon 17α-hydroxyprogesterone and 17α-hydroxypregnenolone to split the side-chain off the steroid nucleus.

3β-Hydroxysteroid dehydrogenase/Δ5-4 isomerase (3β-HSD) is an enzyme that catalyzes the biosynthesis of the steroid progesterone from pregnenolone, 17α-hydroxyprogesterone from 17α-hydroxypregnenolone, and androstenedione from dehydroepiandrosterone (DHEA) in the adrenal gland. It is the only enzyme in the adrenal pathway of corticosteroid synthesis that is not a member of the cytochrome P450 family. It is also present in other steroid-producing tissues, including the ovary, testis and placenta. In humans, there are two 3β-HSD isozymes encoded by the HSD3B1 and HSD3B2 genes.

<span class="mw-page-title-main">Cholesterol side-chain cleavage enzyme</span> Mammalian protein found in Homo sapiens

Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is an enzyme that hydroxylates steroids at the C21 position and is involved in biosynthesis of aldosterone and cortisol. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways that ultimately lead to aldosterone and cortisol. Deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Steroid 11β-hydroxylase</span> Protein found in mammals

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

<span class="mw-page-title-main">SRD5A2</span> Protein-coding gene in the species Homo sapiens

The human gene SRD5A2 encodes the 3-oxo-5α-steroid 4-dehydrogenase 2 enzyme, also known as 5α-reductase type 2 (5αR2), one of three isozymes of 5α-reductase.

<span class="mw-page-title-main">NADPH—hemoprotein reductase</span> Enzyme

In enzymology, a NADPH—hemoprotein reductase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Adrenodoxin reductase</span> Protein-coding gene in the species Homo sapiens

Adrenodoxin reductase, was first isolated from bovine adrenal cortex where it functions as the first enzyme in the mitochondrial P450 systems that catalyze essential steps in steroid hormone biosynthesis. Examination of complete genome sequences revealed that adrenodoxin reductase gene is present in most metazoans and prokaryotes.

<span class="mw-page-title-main">Antley–Bixler syndrome</span> Medical condition

Antley–Bixler syndrome is a rare, severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.

<span class="mw-page-title-main">Aromatase deficiency</span> Medical condition

Aromatase deficiency is a rare condition characterized by extremely low levels or complete absence of the enzyme aromatase activity in the body. It is an autosomal recessive disease resulting from various mutations of gene CYP19 (P450arom) which can lead to ambiguous genitalia and delayed puberty in females, continued linear growth into adulthood and osteoporosis in males and virilization in pregnant mothers. As of 2020, fewer than 15 cases have been identified in genetically male individuals and at least 30 cases in genetically female individuals.

<span class="mw-page-title-main">Inborn errors of steroid metabolism</span> Medical condition

An inborn error of steroid metabolism is an inborn error of metabolism due to defects in steroid metabolism.

Walter L. Miller is an American endocrinologist and professor emeritus of pediatrics at the University of California, San Francisco (UCSF). Miller is expert in the field of human steroid biosynthesis and disorders of steroid metabolism. Over the past 40 years Miller's group at UCSF has described molecular basis of several metabolic disorders including, congenital adrenal hyperplasia, pseudo vitamin D dependent rickets, severe, recessive form of Ehlers-Danlos syndrome, 17,20 lyase deficiency caused by CYP17A1 defects, P450scc deficiency caused by CYP11A1 defects, P450 oxidoreductase deficiency.

<span class="mw-page-title-main">Steroidogenic enzyme</span>

Steroidogenic enzymes are enzymes that are involved in steroidogenesis and steroid biosynthesis. They are responsible for the biosynthesis of the steroid hormones, including sex steroids and corticosteroids, as well as neurosteroids, from cholesterol. Steroidogenic enzymes are most highly expressed in classical steroidogenic tissues, such as the testis, ovary, and adrenal cortex, but are also present in other tissues in the body.

Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease and inborn error of metabolism caused by deficiency of cytochrome P450 oxidoreductase (POR). POR is a 2-flavin protein that is responsible for the transfer of electrons from NADPH to all 50 microsomal cytochrome P450 (CYP450) enzymes. This includes the steroidogenic enzymes CYP17A1 (17α-hydroxylase/17,20-lyase), CYP19A1 (aromatase), and CYP21A2 (21-hydroxylase); CYP26B1 ; and the hepatic drug-metabolizing CYP450 enzymes, among many other CYP450 enzymes. Symptoms of severe forms of PORD include ambiguous genitalia in males and females, congenital adrenal hyperplasia, cortisol deficiency, and Antley–Bixler skeletal malformation syndrome (ABS), while symptoms of mild forms include polycystic ovary syndrome in women and hypogonadism in men. Maternal virilization also occurs in severe forms, due to aromatase deficiency in the placenta. Virilization of female infants in PORD may also be caused by alternative biosynthesis of 5α-dihydrotestosterone via the so-called "androgen backdoor pathway". The ABS component of severe forms of PORD is probably caused by CYP26B1 deficiency, which results in retinoic acid excess and defects during skeletal embryogenesis. All forms of PORD in humans are likely partial, as POR knockout in mice results in death during prenatal development.

The androgen backdoor pathway is a collective name for all metabolic pathways where clinically relevant androgens are synthesized from 21-carbon steroids (pregnanes) by their 5α-reduction with roundabout of testosterone and/or androstenedione.

<span class="mw-page-title-main">5α-Pregnane-3α,17α-diol-20-one</span> Chemical compound

5α-Pregnane-3α,17α-diol-20-one, also known as 17α-hydroxyallopregnanolone (17-OH-allo) is an endogenous steroid.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000127948 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000005514 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Pandey AV, Flück CE (May 2013). "NADPH P450 oxidoreductase: structure, function, and pathology of diseases". Pharmacology & Therapeutics. 138 (2): 229–54. doi:10.1016/j.pharmthera.2013.01.010. PMID   23353702.
  6. Jensen K, Møller BL (February 2010). "Plant NADPH-cytochrome P450 oxidoreductases". Phytochemistry. 71 (2–3): 132–41. Bibcode:2010PChem..71..132J. doi:10.1016/j.phytochem.2009.10.017. PMID   19931102. CPR was shown to be localized in the endoplasmic reticulum in the early 1960s (Williams and Kamin, 1962).
  7. Haniu M, McManus ME, Birkett DJ, Lee TD, Shively JE (October 1989). "Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites". Biochemistry. 28 (21): 8639–45. doi:10.1021/bi00447a054. PMID   2513880.
  8. PDB: 3QE2 ); Xia C, Panda SP, Marohnic CC, Martásek P, Masters BS, Kim JJ (August 2011). "Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13486–91. Bibcode:2011PNAS..10813486X. doi: 10.1073/pnas.1106632108 . PMC   3158178 . PMID   21808038.
  9. Jensen SB, Thodberg S, Parween S, Moses ME, Hansen CC, Thomsen J, et al. (2021-04-15). "Biased cytochrome P450-mediated metabolism via small-molecule ligands binding P450 oxidoreductase". Nature Communications. 12 (1): 2260. Bibcode:2021NatCo..12.2260J. doi: 10.1038/s41467-021-22562-w . PMC   8050233 . PMID   33859207.
  10. Lu AY, Junk KW, Coon MJ (July 1969). "Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components". The Journal of Biological Chemistry. 244 (13): 3714–21. doi: 10.1016/S0021-9258(18)83427-5 . PMID   4389465.
  11. Shen AL, O'Leary KA, Kasper CB (February 2002). "Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase". The Journal of Biological Chemistry. 277 (8): 6536–41. doi: 10.1074/jbc.M111408200 . PMID   11742006.
  12. Gu J, Weng Y, Zhang QY, Cui H, Behr M, Wu L, Yang W, Zhang L, Ding X (July 2003). "Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase". The Journal of Biological Chemistry. 278 (28): 25895–901. doi: 10.1074/jbc.M303125200 . PMID   12697746.
  13. Lesuisse E, Casteras-Simon M, Labbe P (November 1997). "Cytochrome P-450 reductase is responsible for the ferrireductase activity associated with isolated plasma membranes of Saccharomyces cerevisiae". FEMS Microbiology Letters. 156 (1): 147–52. doi:10.1016/S0378-1097(97)00418-7. PMID   9368374.
  14. Pandey AV, Sproll P (214). "Pharmacogenomics of human P450 oxidoreductase". Frontiers in Pharmacology. 5: 103. doi: 10.3389/fphar.2014.00103 . PMC   4023047 . PMID   24847272.
  15. Burkhard FZ, Parween S, Udhane SS, Flück CE, Pandey AV (April 2016). "P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms". The Journal of Steroid Biochemistry and Molecular Biology. 165 (Pt A): 38–50. doi: 10.1016/j.jsbmb.2016.04.003 . PMID   27068427.
  16. 1 2 Flück CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, Jabs EW, Mendonça BB, Fujieda K, Miller WL (March 2004). "Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome". Nature Genetics. 36 (3): 228–30. doi: 10.1038/ng1300 . PMID   14758361.
  17. Arlt W, Walker EA, Draper N, Ivison HE, Ride JP, Hammer F, Chalder SM, Borucka-Mankiewicz M, Hauffa BP, Malunowicz EM, Stewart PM, Shackleton CH (June 2004). "Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study". Lancet. 363 (9427): 2128–35. doi:10.1016/S0140-6736(04)16503-3. PMID   15220035. S2CID   32705841.
  18. Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, Jabs EW, Van Vliet G, Sack J, Flück CE, Miller WL (May 2005). "Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis". American Journal of Human Genetics. 76 (5): 729–49. doi:10.1086/429417. PMC   1199364 . PMID   15793702.
  19. Parween S, Fernández-Cancio M, Benito-Sanz S, Camats N, Rojas Velazquez MN, López-Siguero JP, et al. (April 2020). "Molecular Basis of CYP19A1 Deficiency in a 46,XX Patient With R550W Mutation in POR: Expanding the PORD Phenotype". The Journal of Clinical Endocrinology and Metabolism. 105 (4): e1272–e1290. doi: 10.1210/clinem/dgaa076 . PMID   32060549.
  20. Pandey AV, Kempná P, Hofer G, Mullis PE, Flück CE (October 2007). "Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase". Molecular Endocrinology. 21 (10): 2579–95. doi:10.1210/me.2007-0245. PMID   17595315.
  21. 1 2 Flück CE, Meyer-Böni M, Pandey AV, Kempná P, Miller WL, Schoenle EJ, Biason-Lauber A (August 2011). "Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation". American Journal of Human Genetics. 89 (2): 201–18. doi:10.1016/j.ajhg.2011.06.009. PMC   3155178 . PMID   21802064.
  22. Reisch N, Taylor AE, Nogueira EF, Asby DJ, Dhir V, Berry A, Krone N, Auchus RJ, Shackleton CH, Hanley NA, Arlt W (October 2019). "Alternative pathway androgen biosynthesis and human fetal female virilization". Proceedings of the National Academy of Sciences of the United States of America. 116 (44): 22294–22299. Bibcode:2019PNAS..11622294R. doi: 10.1073/pnas.1906623116 . PMC   6825302 . PMID   31611378.
  23. Shackleton C, Marcos J, Arlt W, Hauffa BP (August 2004). "Prenatal diagnosis of P450 oxidoreductase deficiency (ORD): a disorder causing low pregnancy estriol, maternal and fetal virilization, and the Antley-Bixler syndrome phenotype". American Journal of Medical Genetics Part A. 129A (2): 105–12. doi:10.1002/ajmg.a.30171. PMID   15316970. S2CID   22583190.
  24. Flück CE, Mullis PE, Pandey AV (October 2010). "Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism". Biochemical and Biophysical Research Communications. 401 (1): 149–53. doi:10.1016/j.bbrc.2010.09.035. PMID   20849814.
  25. Tomalik-Scharte D, Maiter D, Kirchheiner J, Ivison HE, Fuhr U, Arlt W (December 2010). "Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency". European Journal of Endocrinology. 163 (6): 919–24. doi:10.1530/EJE-10-0764. PMC   2977993 . PMID   20844025.
  26. Nicolo C, Flück CE, Mullis PE, Pandey AV (June 2010). "Restoration of mutant cytochrome P450 reductase activity by external flavin". Molecular and Cellular Endocrinology. 321 (2): 245–52. doi:10.1016/j.mce.2010.02.024. PMID   20188793. S2CID   29109570.
  27. Sandee D, Morrissey K, Agrawal V, Tam HK, Kramer MA, Tracy TS, Giacomini KM, Miller WL (November 2010). "Effects of genetic variants of human P450 oxidoreductase on catalysis by CYP2D6 in vitro". Pharmacogenetics and Genomics. 20 (11): 677–86. doi:10.1097/FPC.0b013e32833f4f9b. PMC   5708132 . PMID   20940534.
  28. Agrawal V, Choi JH, Giacomini KM, Miller WL (October 2010). "Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase". Pharmacogenetics and Genomics. 20 (10): 611–8. doi:10.1097/FPC.0b013e32833e0cb5. PMC   2940949 . PMID   20697309.
  29. Flück CE, Pandey AV (March 2016). "Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase". The Journal of Steroid Biochemistry and Molecular Biology. 165 (Pt A): 64–70. doi:10.1016/j.jsbmb.2016.03.031. PMID   27032764. S2CID   23498012.
  30. Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot MT, Antonarakis SE, Reymond A (August 2006). "Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes". American Journal of Human Genetics. 79 (2): 332–41. doi:10.1086/506371. PMC   1559497 . PMID   16826523.
  31. Charvat KA, Hornstein L, Oestreich AE (1991). "Radio-ulnar synostosis in Williams syndrome. A frequently associated anomaly". Pediatric Radiology. 21 (7): 508–10. doi:10.1007/bf02011725. PMID   1771116. S2CID   33765973.
  32. Ichinose M, Tojo K, Nakamura K, Matsuda H, Tokudome G, Ohta M, Sakai S, Sakai O (June 1996). "Williams syndrome associated with chronic renal failure and various endocrinological abnormalities". Internal Medicine. 35 (6): 482–8. doi: 10.2169/internalmedicine.35.482 . PMID   8835601.
  33. Partsch CJ, Pankau R, Blum WF, Gosch A, Wessel A (July 1994). "Hormonal regulation in children and adults with Williams-Beuren syndrome". American Journal of Medical Genetics. 51 (3): 251–7. doi:10.1002/ajmg.1320510316. PMID   8074154.
  34. Wu L, Gu J, Cui H, Zhang QY, Behr M, Fang C, Weng Y, Kluetzman K, Swiatek PJ, Yang W, Kaminsky L, Ding X (January 2005). "Transgenic mice with a hypomorphic NADPH-cytochrome P450 reductase gene: effects on development, reproduction, and microsomal cytochrome P450". The Journal of Pharmacology and Experimental Therapeutics. 312 (1): 35–43. doi:10.1124/jpet.104.073353. PMID   15328377. S2CID   8292025.