Methylenetetrahydrofolate reductase

Last updated
MTHFR
Identifiers
Aliases MTHFR , entrez:4524, methylenetetrahydrofolate reductase
External IDs OMIM: 607093 MGI: 106639 HomoloGene: 4349 GeneCards: MTHFR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005957
NM_001330358

NM_001161798
NM_010840

RefSeq (protein)

NP_001317287
NP_005948

NP_001155270
NP_034970

Location (UCSC) Chr 1: 11.79 – 11.81 Mb Chr 4: 148.12 – 148.14 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. [5] Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in otherwise healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency. [6] [7] [8] Complex I deficiency with recessive spastic paraparesis has also been linked to MTHFR variants. In addition, the aberrant promoter hypermethylation of this gene is associated with male infertility and recurrent spontaneous abortion. [9] [10]

Contents

Biochemistry

methylene tetrahydrofolate reductase [NAD(P)H]
MTHFR reaction.svg
Schematic diagram of the reductive carbon–nitrogen bond cleavage (represented by wavy line) catalyzed by methylenetetrahydrofolate reductase.
Identifiers
EC no. 1.5.1.20
CAS no. 9028-69-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In the rate-limiting step of the methyl cycle, MTHFR irreversibly reduces 5,10-methylenetetrahydrofolate (substrate) to 5-methyltetrahydrofolate (product).

MTHFR contains a bound flavin cofactor and uses NAD(P)H as the reducing agent.

Structure


Mammalian MTHFR is composed of an N-terminal catalytic domain and a C-terminal regulatory domain. MTHFR has at least two promoters and two isoforms (70 kDa and 77 kDa). [11]

Regulation

MTHFR activity may be inhibited by binding of dihydrofolate (DHF) [12] and S-adenosylmethionine (SAM, or AdoMet). [13] MTHFR can also be phosphorylated – this decreases its activity by ~20% and allows it to be more easily inhibited by SAM. [14]

Genetics

The enzyme is coded by the gene with the symbol MTHFR on chromosome 1 location p36.3 in humans. [15] There are DNA sequence variants (genetic polymorphisms) associated with this gene. In 2000 a report brought the number of polymorphisms up to 24. [16] Two of the most investigated are C677T (rs1801133) and A1298C (rs1801131) single nucleotide polymorphisms (SNPs).

While multiple published studies have drawn relationships between these SNPs and a wide variety of diseases, the American College of Medical Genetics has issued an official Practice Guideline recommending against testing or reporting on these two variants, citing "Recent meta-analyses have disproven an association between hyperhomocysteinemia and risk for coronary heart disease and between MTHFR polymorphism status and risk for venous thromboembolism. There is growing evidence that MTHFR polymorphism testing has minimal clinical utility." [17]

C677T SNP (Ala222Val)

The MTHFR nucleotide at position 677 in the gene has two possibilities: C (cytosine) or T (thymine). C at position 677 (leading to an alanine at amino acid 222) is the reference allele. The 677T allele (leading to a valine substitution at amino acid 222) encodes a thermolabile alternative enzyme variant with reduced activity. Both reference and alternative genotypes are common, with the alternative allele frequency at 10-35%, depending on ancestry. [18]

Individuals with two copies of 677C (677CC) have the most common genotype. 677TT individuals (homozygous) have lower MTHFR activity than CC or CT (heterozygous) individuals. About ten percent of the North American population are T-homozygous for this polymorphism. There is ethnic variability in the frequency of the T allele – frequency in Mediterranean/Hispanics is greater than the frequency in Caucasians which, in turn, is greater than in Africans/African-Americans. [19]

The degree of enzyme thermolability (assessed as residual activity after heat inactivation) is much greater in 677TT individuals (18–22%) compared with 677CT (56%) and 677CC (66–67%). [20] Individuals of 677TT are predisposed to mild hyperhomocysteinemia (high blood homocysteine levels), because they have less active MTHFR available to produce 5-methyltetrahydrofolate (which is used to decrease homocysteine). Low dietary intake of the vitamin folate can also cause mild hyperhomocysteinemia.

Low folate intake affects individuals with the 677TT genotype to a greater extent than those with the 677CC/CT genotypes. 677TT (but not 677CC/CT) individuals with lower plasma folate levels are at risk for elevated plasma homocysteine levels. [21] In studies of human recombinant MTHFR, the protein encoded by 677T loses its FAD cofactor three times faster than the wild-type protein. [22] 5-Methyl-THF slows the rate of FAD release in both the wild-type and mutant enzymes, although it is to a much greater extent in the mutant enzyme. [22] Low folate status with the consequent loss of FAD enhances the thermolability of the enzyme, thus providing an explanation for the normalised homocysteine and DNA methylation levels in folate-replete 677TT individuals.

This polymorphism and mild hyperhomocysteinemia are associated with neural tube defects in offspring, increased risk for complications of pregnancy other complications of pregnancy, [23] arterial and venous thrombosis, and cardiovascular disease. [24] 677TT individuals are at an increased risk for acute lymphoblastic leukemia [25] and colon cancer. [26]

Mutations in the MTHFR gene could be one of the factors leading to increased risk of developing schizophrenia. [27] Schizophrenic patients having the risk allele (T\T) show more deficiencies in executive function tasks. [28]

The C677T genotype used to be associated with increased risk of recurrent pregnancy loss (RPL) in non Caucasians, [29] however this link has been disproved in recent years.[ citation needed ] The American College of Medical Genetics recommendation guidelines currently state that people with recurrent pregnancy loss should not be tested for variants in the MTHFR gene.

There is also a tentative link between MTHFR mutations and dementia. One study of an elderly Japanese population [30] found correlations between the MTHFR 677CT mutation, an Apo E polymorphism, and certain types of senile dementia. Other research has found that individuals with folate-related mutations can still have a functional deficiency even when blood levels of folate are within the normal range, [31] and recommended supplementation of methyltetrahydrofolate to potentially prevent and treat dementia (along with depression). A 2011 study from China also found that the C677T SNP was associated with Alzheimer's disease in Asian populations (though not in Caucasians). [32]

C677T polymorphism is associated with risk of myocardial infarction in African, North American, and elderly populations. [33]

The CDC provides a web page with information on the "MTHFR Gene, Folic Acid, and Preventing Neural Tube Defects". National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. 15 June 2022. Retrieved 24 Sep 2023.

A1298C SNP (Glu429Ala)

At nucleotide 1298 of the MTHFR, there are two possibilities: A or C. 1298A (leading to a Glu at amino acid 429) is the most common while 1298C (leading to an Ala substitution at amino acid 429) is less common. 1298AA is the "normal" homozygous, 1298AC the heterozygous, and 1298CC the homozygous for the "variant". In studies of human recombinant MTHFR, the protein encoded by 1298C cannot be distinguished from 1298A in terms of activity, thermolability, FAD release, or the protective effect of 5-methyl-THF. [22] The C mutation does not appear to affect the MTHFR protein. It does not result in thermolabile MTHFR and does not appear to affect homocysteine levels. It does, however, affect the conversion of MTHF to BH4 (tetrahydrobiopterin), an important cofactor in the production of neurotransmitters, and the synthesis of nitric oxide.[ citation needed ]

There has been some commentary on a 'reverse reaction' in which tetrahydrobiopterin (BH4) is produced when 5-methyltetrahydrofolate is converted back into methylenetetrahydrofolate. This however is not universally agreed upon. That reaction is thought to require 5-MTHF and SAMe.[ citation needed ] An alternative opinion is that 5-MTHF processes peroxynitrite, thereby preserving existing BH4, and that no such 'reverse reaction' occurs.

A maternal MTHFR A1298C polymorphism is associated with Down syndrome pregnancy. Subgroup and sensitivity analysis results showed that this polymorphism is a risk factor for Down syndrome pregnancy in Asian populations but not in Caucasian population as well as in overall meta-analysis. [34]

MTHFR A1298C may play a role as either a driver in the development of major depressive disorder or as a predictive or diagnostic marker, possibly in combination with C677T. [35]

Detection of MTHFR polymorphisms

A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction. [36]

Severe MTHFR deficiency

Severe MTHFR deficiency is rare (about 50 cases worldwide) and caused by mutations resulting in 0–20% residual enzyme activity. [16] Patients exhibit developmental delay, motor and gait dysfunction, seizures, and neurological impairment and have extremely high levels of homocysteine in their plasma and urine as well as low to normal plasma methionine levels. This deficiency and mutations in MTHFR have also been linked to recessive spastic paraparesis with complex I deficiency. [37]

A study on the Chinese Uyghur population indicated that rs1801131 polymorphism in MTHFR was associated with nsCL/P in Chinese Uyghur population. Given the unique genetic and environmental characters of the Uyghur population, these findings may be helpful for exploring the pathogenesis of this complex disease. [38]

Epigenetics

The MTHFR aberrant promoter hypermethylation is associated with male infertility. Furthermore, this improper epigenetic phenomenon was observed in semen samples of infertile males belonging to couples with a history of recurrent spontaneous abortion. [9] The MTHFR improper promoter hypermethylation may affect the two essential roles of DNA methylation in spermatogenetic cells, the global genome methylation process and the genomic imprinting of paternal genes. In addition, MTHFR gene promoter hypermethylation has also been associated with methylation loss at H19 imprinted gene in semen samples from infertile males. [10]

As a drug target

Inhibitors of MTHFR and antisense knockdown of the expression of the enzyme have been proposed as treatments for cancer. [39] The active form of folate, L-methylfolate, may be appropriate to target for conditions affected by MTHFR polymorphisms. [40]

Reaction and metabolism

The overall reaction catalyzed by MTHFR is illustrated on the right. The reaction uses an NAD(P)H hydride donor and an FAD cofactor. The E. coli enzyme has a strong preference for the NADH donor, whereas the mammalian enzyme is specific to NADPH.

MTHFR metabolism: folate cycle, methionine cycle, trans-sulfuration and hyperhomocysteinemia. 5-MTHF: 5-methyltetrahydrofolate; 5,10-methylenetetrahydrofolate; BAX: Bcl-2-associated X protein; BHMT: betaine-homocysteine S-methyltransferase; CBS: cystathionine beta synthase; CGL: cystathionine gamma-lyase; DHF: dihydrofolate (vitamin B9); DMG: dimethylglycine; dTMP: thymidine monophosphate; dUMP: deoxyuridine monophosphate; FAD flavine adenine dicucleotide; FTHF: 10-formyltetrahydrofolate; MS: methionine synthase; MTHFR: mehtylenetetrahydrofolate reductase; SAH: S-adenosyl-L-homocysteine; SAM (SAMe): S-adenosyl-L-methionine; THF: tetrahydrofolate. MTHFR metabolism.svg
MTHFR metabolism: folate cycle, methionine cycle, trans-sulfuration and hyperhomocysteinemia. 5-MTHF: 5-methyltetrahydrofolate; 5,10-methylenetetrahydrofolate; BAX: Bcl-2-associated X protein; BHMT: betaine-homocysteine S-methyltransferase; CBS: cystathionine beta synthase; CGL: cystathionine gamma-lyase; DHF: dihydrofolate (vitamin B9); DMG: dimethylglycine; dTMP: thymidine monophosphate; dUMP: deoxyuridine monophosphate; FAD flavine adenine dicucleotide; FTHF: 10-formyltetrahydrofolate; MS: methionine synthase; MTHFR: mehtylenetetrahydrofolate reductase; SAH: S-adenosyl-L-homocysteine; SAM (SAMe): S-adenosyl-L-methionine; THF: tetrahydrofolate.

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
FluoropyrimidineActivity WP1601.png go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
FluoropyrimidineActivity WP1601.png go to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to PubChem Compoundgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to pathway articlego to pathway articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|alt=Fluorouracil (5-FU) Activity edit]]
Fluorouracil (5-FU) Activity edit
  1. The interactive pathway map can be edited at WikiPathways: "FluoropyrimidineActivity_WP1601".

Alternative medicine

With the growth of direct-to-consumer genetic testing, the alternative medicine industry has aggressively targeted a range of dubious tests [41] and highly profitable quack treatments for claimed MTHFR polymorphisms, despite the lack of any demonstrated health effects of these mutations. [42] The promotion of supplements and other treatments for MTHFR polymorphisms, especially centered on autistic spectrum disorder, [43] have been characterised as snake oil. Tests for MTHFR, while gaining popularity, are generally unnecessary because the association of MTHFR gene mutations with various diseases have not been established as clear-cut cause-and-effect relationship. [44]

See also

Related Research Articles

<span class="mw-page-title-main">Folate</span> Vitamin B9; nutrient essential for DNA synthesis

Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division. As the human body cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.

<i>S</i>-Adenosyl methionine Chemical compound found in all domains of life with largely unexplored effects

S-Adenosyl methionine (SAM), also known under the commercial names of SAMe, SAM-e, or AdoMet, is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM is produced and consumed in the liver. More than 40 methyl transfers from SAM are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase. SAM was first discovered by Giulio Cantoni in 1952.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase (MS, MeSe, MTR) is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">Neural tube defect</span> Group of birth defects of the brain or spinal cord

Neural tube defects (NTDs) are a group of birth defects in which an opening in the spine or cranium remains from early in human development. In the third week of pregnancy called gastrulation, specialized cells on the dorsal side of the embryo begin to change shape and form the neural tube. When the neural tube does not close completely, an NTD develops.

<span class="mw-page-title-main">Hyperhomocysteinemia</span> Medical condition

Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of total homocysteine in the blood, conventionally described as above 15 μmol/L.

<span class="mw-page-title-main">Levomefolic acid</span> Chemical compound

Levomefolic acid (INN, also known as L-5-MTHF, L-methylfolate and L-5-methyltetrahydrofolate and (6S)-5-methyltetrahydrofolate, and (6S)-5-MTHF) is the primary biologically active form of folate used at the cellular level for DNA reproduction, the cysteine cycle and the regulation of homocysteine. It is also the form found in circulation and transported across membranes into tissues and across the blood–brain barrier. In the cell, L-methylfolate is used in the methylation of homocysteine to form methionine and tetrahydrofolate (THF). THF is the immediate acceptor of one carbon unit for the synthesis of thymidine-DNA, purines (RNA and DNA) and methionine. The un-methylated form, folic acid (vitamin B9), is a synthetic form of folate, and must undergo enzymatic reduction by dihydrofolate reductase (DHFR) to become biologically active.

<span class="mw-page-title-main">5,10-Methylenetetrahydrofolate</span> Chemical compound

5,10-Methylenetetrahydrofolate (N5,N10-Methylenetetrahydrofolate; 5,10-CH2-THF) is cofactor in several biochemical reactions. It exists in nature as the diastereoisomer [6R]-5,10-methylene-THF.

<span class="mw-page-title-main">Phosphatidylethanolamine N-methyltransferase</span> Protein-coding gene in the species Homo sapiens

Phosphatidylethanolamine N-methyltransferase is a transferase enzyme which converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. In humans it is encoded by the PEMT gene within the Smith–Magenis syndrome region on chromosome 17.

In enzymology, a methylenetetrahydrofolate reductase (ferredoxin) (EC 1.5.7.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">MTHFD1</span>

Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) is a gene located in humans on chromosome 14 that encodes a protein, C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase, with three distinct enzymatic activities.

C677T or rs1801133 is a genetic variation—a single nucleotide polymorphism (SNP)—in the MTHFR gene.

Rima Rozen is a Canadian geneticist who is a professor at McGill University. Her current research focuses on genetic and nutritional deficiencies in folate metabolism and their impact on complex traits.

<span class="mw-page-title-main">Haptocorrin</span> Protein-coding gene in the species Homo sapiens

Haptocorrin (HC) also known as transcobalamin-1 (TC-1) or cobalophilin is a transcobalamin protein that in humans is encoded by the TCN1 gene. One essential function of haptocorrin is protection of the acid-sensitive vitamin B12 while it moves through the stomach. A second function is serum HC binding of the great majority of circulating vitamin B12, rendering it unavailable for take-up by cells. This is conjectured to be a circulating storage function.

Autism spectrum disorder (ASD) refers to a variety of conditions typically identified by challenges with social skills, communication, speech, and repetitive sensory-motor behaviors. The 11th International Classification of Diseases (ICD-11), released in January 2021, characterizes ASD by the associated deficits in the ability to initiate and sustain two-way social communication and restricted or repetitive behavior unusual for the individual's age or situation. Although linked with early childhood, the symptoms can appear later as well. Symptoms can be detected before the age of two and experienced practitioners can give a reliable diagnosis by that age. However, official diagnosis may not occur until much older, even well into adulthood. There is a large degree of variation in how much support a person with ASD needs in day-to-day life. This can be classified by a further diagnosis of ASD level 1, level 2, or level 3. Of these, ASD level 3 describes people requiring very substantial support and who experience more severe symptoms. ASD-related deficits in nonverbal and verbal social skills can result in impediments in personal, family, social, educational, and occupational situations. This disorder tends to have a strong correlation with genetics along with other factors. More research is identifying ways in which epigenetics is linked to autism. Epigenetics generally refers to the ways in which chromatin structure is altered to affect gene expression. Mechanisms such as cytosine regulation and post-translational modifications of histones. Of the 215 genes contributing, to some extent in ASD, 42 have been found to be involved in epigenetic modification of gene expression. Some examples of ASD signs are specific or repeated behaviors, enhanced sensitivity to materials, being upset by changes in routine, appearing to show reduced interest in others, avoiding eye contact and limitations in social situations, as well as verbal communication. When social interaction becomes more important, some whose condition might have been overlooked suffer social and other exclusion and are more likely to have coexisting mental and physical conditions. Long-term problems include difficulties in daily living such as managing schedules, hypersensitivities, initiating and sustaining relationships, and maintaining jobs.

In recent years it has become apparent that the environment and underlying mechanisms affect gene expression and the genome outside of the central dogma of biology. It has been found that many epigenetic mechanisms are involved in the regulation and expression of genes such as DNA methylation and chromatin remodeling. These epigenetic mechanisms are believed to be a contributing factor to pathological diseases such as type 2 diabetes. An understanding of the epigenome of diabetes patients may help to elucidate otherwise hidden causes of this disease.

Rowena Green Matthews, born in 1938, is the G. Robert Greenberg Distinguished University professor emeritus at the University of Michigan, Ann Arbor. Her research focuses on the role of organic cofactors as partners of enzymes catalyzing difficult biochemical reactions, especially folic acid and cobalamin. Among other honors, she was elected to the National Academy of Sciences in 2002 and the Institute of Medicine in 2004.

Methylenetetrahydrofolate reductase deficiency is the most common genetic cause of elevated serum levels of homocysteine (hyperhomocysteinemia). It is caused by genetic defects in MTHFR, which is an important enzyme in the methyl cycle.

<span class="mw-page-title-main">2,4-dienoyl-CoA reductase 1</span> Protein-coding gene in the species Homo sapiens

2,4-dienoyl-CoA reductase 1 is a protein that in humans is encoded by the DECR1 gene.

Riboflavin-responsive exercise intolerance is a rare disorder caused by mutations of the SLC25A32 gene that encodes the mitochondrial folate transporter. Patients suffer from exercise intolerance and may have disrupted motor function.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000177000 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029009 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (June 1994). "Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification". Nature Genetics. 7 (2): 195–200. doi:10.1038/ng0694-195. PMID   7920641. S2CID   23877329.
  6. "Entrez Gene: MTHFR methylene tetrahydrofolate reductase (NAD(P)H)".
  7. Födinger M, Hörl WH, Sunder-Plassmann G (2000). "Molecular biology of 5,10-methylenetetrahydrofolate reductase". Journal of Nephrology. 13 (1): 20–33. PMID   10720211.
  8. Trimmer EE (2013). "Methylenetetrahydrofolate reductase: biochemical characterization and medical significance". Current Pharmaceutical Design. 19 (14): 2574–93. doi:10.2174/1381612811319140008. PMID   23116396.
  9. 1 2 Rotondo JC, Bosi S, Bazzan E, Di Domenico M, De Mattei M, Selvatici R, Patella A, Marci R, Tognon M, Martini F (December 2012). "Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion". Human Reproduction. 27 (12): 3632–8. doi: 10.1093/humrep/des319 . hdl: 11392/1689715 . PMID   23010533.
  10. 1 2 Rotondo JC, Selvatici R, Di Domenico M, Marci R, Vesce F, Tognon M, Martini F (September 2013). "Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males". Epigenetics. 8 (9): 990–7. doi:10.4161/epi.25798. PMC   3883776 . PMID   23975186.
  11. Tran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, Goyette P, Artigas C, Milos R, Rozen R (September 2002). "Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms". Mammalian Genome. 13 (9): 483–92. doi:10.1007/s00335-002-2167-6. PMID   12370778. S2CID   19722541.
  12. Matthews RG, Daubner SC (1982). "Modulation of methylenetetrahydrofolate reductase activity by S-adenosylmethionine and by dihydrofolate and its polyglutamate analogues" (PDF). Advances in Enzyme Regulation. 20: 123–31. doi:10.1016/0065-2571(82)90012-7. hdl: 2027.42/24098 . PMID   7051769.
  13. Jencks DA, Mathews RG (February 1987). "Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethionine. Effects of adenosylmethionine and NADPH on the equilibrium between active and inactive forms of the enzyme and on the kinetics of approach to equilibrium". The Journal of Biological Chemistry. 262 (6): 2485–93. doi: 10.1016/S0021-9258(18)61530-3 . PMID   3818603.
  14. Yamada K, Strahler JR, Andrews PC, Matthews RG (July 2005). "Regulation of human methylenetetrahydrofolate reductase by phosphorylation". Proceedings of the National Academy of Sciences of the United States of America. 102 (30): 10454–9. Bibcode:2005PNAS..10210454Y. doi: 10.1073/pnas.0504786102 . PMC   1180802 . PMID   16024724.
  15. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, Rozen R (August 1994). "Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification". Nature Genetics. 7 (4): 551. doi: 10.1038/ng0894-551a . PMID   7951330.
  16. 1 2 Sibani S, Christensen B, O'Ferrall E, Saadi I, Hiou-Tim F, Rosenblatt DS, Rozen R (2000). "Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria". Human Mutation. 15 (3): 280–7. doi: 10.1002/(SICI)1098-1004(200003)15:3<280::AID-HUMU9>3.0.CO;2-I . PMID   10679944. S2CID   25475434.
  17. Hickey SE, Curry CJ, Toriello HV (February 2013). "ACMG Practice Guideline: lack of evidence for MTHFR polymorphism testing". Genetics in Medicine. 15 (2): 153–156. doi: 10.1038/gim.2012.165 . PMID   23288205. S2CID   12461781.
  18. "rs1801133". dbSNP. National Library of Medicine. Retrieved 26 April 2023.
  19. Schneider JA, Rees DC, Liu YT, Clegg JB (May 1998). "Worldwide distribution of a common methylenetetrahydrofolate reductase mutation". American Journal of Human Genetics. 62 (5): 1258–60. doi:10.1086/301836. PMC   1377093 . PMID   9545406.
  20. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP (May 1995). "A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase". Nature Genetics. 10 (1): 111–3. doi:10.1038/ng0595-111. hdl: 2066/22247 . PMID   7647779. S2CID   52818399.
  21. Reilly R, McNulty H, Pentieva K, Strain JJ, Ward M (February 2014). "MTHFR 677TT genotype and disease risk: is there a modulating role for B-vitamins?". The Proceedings of the Nutrition Society. 73 (1): 47–56. doi: 10.1017/S0029665113003613 . PMID   24131523.
  22. 1 2 3 Yamada K, Chen Z, Rozen R, Matthews RG (December 2001). "Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase". Proceedings of the National Academy of Sciences of the United States of America. 98 (26): 14853–8. Bibcode:2001PNAS...9814853Y. doi: 10.1073/pnas.261469998 . PMC   64948 . PMID   11742092.
  23. Björklund NK, Evans JA, Greenberg CR, Seargeant LE, Schneider CE, Chodirker BN (September 2004). "The C677T methylenetetrahydrofolate reductase variant and third trimester obstetrical complications in women with unexplained elevations of maternal serum alpha-fetoprotein". Reproductive Biology and Endocrinology. 2 (1): 65. doi: 10.1186/1477-7827-2-65 . PMC   520832 . PMID   15352998.
  24. Schwahn B, Rozen R (2001). "Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences". American Journal of Pharmacogenomics. 1 (3): 189–201. doi:10.2165/00129785-200101030-00004. PMID   12083967. S2CID   84305709.
  25. Ojha RP, Gurney JG (January 2014). "Methylenetetrahydrofolate reductase C677T and overall survival in pediatric acute lymphoblastic leukemia: a systematic review". Leukemia & Lymphoma. 55 (1): 67–73. doi:10.3109/10428194.2013.792336. PMID   23550988. S2CID   31306299.
  26. Bailey LB (November 2003). "Folate, methyl-related nutrients, alcohol, and the MTHFR 677C-->T polymorphism affect cancer risk: intake recommendations". The Journal of Nutrition. 133 (11 Suppl 1): 3748S–3753S. doi: 10.1093/jn/133.11.3748S . PMID   14608109.
  27. "Meta-Analysis of All Published Schizophrenia-Association Studies (Case-Control Only) for rs1801133 (C677T) polymorphism, MTHFR gene". Schizophrenia Research Forum. Archived from the original on 2012-02-09. Retrieved 2007-03-11.
  28. Roffman JL, Weiss AP, Deckersbach T, Freudenreich O, Henderson DC, Purcell S, Wong DH, Halsted CH, Goff DC (May 2007). "Effects of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism on executive function in schizophrenia". Schizophrenia Research. 92 (1–3): 181–8. doi:10.1016/j.schres.2007.01.003. PMID   17344026. S2CID   25460976.
  29. Wu X, Zhao L, Zhu H, He D, Tang W, Luo Y (July 2012). "Association between the MTHFR C677T polymorphism and recurrent pregnancy loss: a meta-analysis". Genetic Testing and Molecular Biomarkers. 16 (7): 806–11. doi:10.1089/gtmb.2011.0318. PMID   22313097.
  30. Nishiyama M, Kato Y, Hashimoto M, Yukawa S, Omori K (May 2000). "Apolipoprotein E, methylenetetrahydrofolate reductase (MTHFR) mutation and the risk of senile dementia--an epidemiological study using the polymerase chain reaction (PCR) method". Journal of Epidemiology. 10 (3): 163–72. doi: 10.2188/jea.10.163 . PMID   10860300.
  31. Mischoulon D, Raab MF (2007). "The role of folate in depression and dementia". The Journal of Clinical Psychiatry. 68 (Suppl 10): 28–33. PMID   17900207.
  32. Hua Y, Zhao H, Kong Y, Ye M (August 2011). "Association between the MTHFR gene and Alzheimer's disease: a meta-analysis". The International Journal of Neuroscience. 121 (8): 462–71. doi:10.3109/00207454.2011.578778. PMID   21663380. S2CID   835012.
  33. Alizadeh S, Djafarian K, Moradi S, Shab-Bidar S (August 2016). "C667T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene and susceptibility to myocardial infarction: A systematic review and meta-analysis". International Journal of Cardiology. 217: 99–108. doi:10.1016/j.ijcard.2016.04.181. PMID   27179899.
  34. Rai V, Yadav U, Kumar P (January 2017). "Null association of maternal MTHFR A1298C polymorphism with Down syndrome pregnancy: An updated meta-analysis". Egyptian Journal of Medical Human Genetics. 18 (1): 9–18. doi: 10.1016/j.ejmhg.2016.04.003 .
  35. Cho K, Amin ZM, An J, Rambaran KA, Johnson TB, Alzghari SK (October 2017). "Methylenetetrahydrofolate Reductase A1298C Polymorphism and Major Depressive Disorder". Cureus. 9 (10): e1734. doi: 10.7759/cureus.1734 . PMC   5711500 . PMID   29209581.
  36. Lajin B, Alachkar A, Sakur AA (February 2012). "Triplex tetra-primer ARMS-PCR method for the simultaneous detection of MTHFR c.677C>T and c.1298A>C, and MTRR c.66A>G polymorphisms of the folate-homocysteine metabolic pathway". Molecular and Cellular Probes. 26 (1): 16–20. doi:10.1016/j.mcp.2011.10.005. PMID   22074746.
  37. Bathgate D, Yu-Wai-Man P, Webb B, Taylor RW, Fowler B, Chinnery PF (January 2012). "Recessive spastic paraparesis associated with complex I deficiency due to MTHFR mutations". Journal of Neurology, Neurosurgery, and Psychiatry. 83 (1): 115. doi:10.1136/jnnp.2010.218586. PMID   21131308. S2CID   13912730.
  38. Xu X, Pan H, Yu L, Hong Y (2016). "Association of MTHFR polymorphisms with nsCL/P in Chinese Uyghur population". Egyptian Journal of Medical Human Genetics. 17 (4): 311–316. doi: 10.1016/j.ejmhg.2016.03.003 .
  39. Stankova J, Lawrance AK, Rozen R (2008). "Methylenetetrahydrofolate reductase (MTHFR): a novel target for cancer therapy". Current Pharmaceutical Design. 14 (11): 1143–50. doi:10.2174/138161208784246171. PMID   18473861.
  40. Papakostas GI, Shelton RC, Zajecka JM, Bottiglieri T, Roffman J, Cassiello C, Stahl SM, Fava M (August 2014). "Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial". The Journal of Clinical Psychiatry. 75 (8): 855–63. doi:10.4088/JCP.13m08947. PMID   24813065.
  41. "Dubious MTHFR genetic mutation testing". Science-Based Medicine. 2015-06-11. Retrieved 2018-07-13.
  42. Hermes BM (2016-11-14). "How Your Genetic Sequence Can Be Exploited By The Supplement Industry". Forbes. Retrieved 2018-07-13.
  43. Langreth R, Lauerman J (2012-12-24). "Autism cures promised by DNA testers belied by regulators" . The Independent. Archived from the original on 2022-05-12. Retrieved 2018-07-13.
  44. Eng C (2013-09-27). "A Genetic Test You Don't Need". Health Essentials from Cleveland Clinic. Retrieved 2018-07-13.

Further reading