Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. [5] Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in otherwise healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency. [6] [7] [8] Complex I deficiency with recessive spastic paraparesis has also been linked to MTHFR variants. In addition, the aberrant promoter hypermethylation of this gene is associated with male infertility and recurrent spontaneous abortion. [9] [10]
methylene tetrahydrofolate reductase [NAD(P)H] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.5.1.20 | ||||||||
CAS no. | 9028-69-7 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / QuickGO | ||||||||
|
In the rate-limiting step of the methyl cycle, MTHFR irreversibly reduces 5,10-methylenetetrahydrofolate (substrate) to 5-methyltetrahydrofolate (product).
MTHFR contains a bound flavin cofactor and uses NAD(P)H as the reducing agent.
Mammalian MTHFR is composed of an N-terminal catalytic domain and a C-terminal regulatory domain. MTHFR has at least two promoters and two isoforms (70 kDa and 77 kDa). [11]
MTHFR activity may be inhibited by binding of dihydrofolate (DHF) [12] and S-adenosylmethionine (SAM, or AdoMet). [13] MTHFR can also be phosphorylated – this decreases its activity by ~20% and allows it to be more easily inhibited by SAM. [14]
The enzyme is coded by the gene with the symbol MTHFR on chromosome 1 location p36.3 in humans. [15] There are DNA sequence variants (genetic polymorphisms) associated with this gene. In 2000 a report brought the number of polymorphisms up to 24. [16] Two of the most investigated are C677T (rs1801133) and A1298C (rs1801131) single nucleotide polymorphisms (SNPs).
While multiple published studies have drawn relationships between these SNPs and a wide variety of diseases, the American College of Medical Genetics has issued an official Practice Guideline recommending against testing or reporting on these two variants, citing "Recent meta-analyses have disproven an association between hyperhomocysteinemia and risk for coronary heart disease and between MTHFR polymorphism status and risk for venous thromboembolism. There is growing evidence that MTHFR polymorphism testing has minimal clinical utility." [17]
The MTHFR nucleotide at position 677 in the gene has two possibilities: C (cytosine) or T (thymine). C at position 677 (leading to an alanine at amino acid 222) is the reference allele. The 677T allele (leading to a valine substitution at amino acid 222) encodes a thermolabile alternative enzyme variant with reduced activity. Both reference and alternative genotypes are common, with the alternative allele frequency at 10-35%, depending on ancestry. [18]
Individuals with two copies of 677C (677CC) have the most common genotype. 677TT individuals (homozygous) have lower MTHFR activity than CC or CT (heterozygous) individuals. About ten percent of the North American population are T-homozygous for this polymorphism. There is ethnic variability in the frequency of the T allele – frequency in Mediterranean/Hispanics is greater than the frequency in Caucasians which, in turn, is greater than in Africans/African-Americans. [19]
The degree of enzyme thermolability (assessed as residual activity after heat inactivation) is much greater in 677TT individuals (18–22%) compared with 677CT (56%) and 677CC (66–67%). [20] Individuals of 677TT are predisposed to mild hyperhomocysteinemia (high blood homocysteine levels), because they have less active MTHFR available to produce 5-methyltetrahydrofolate (which is used to decrease homocysteine). Low dietary intake of the vitamin folate can also cause mild hyperhomocysteinemia.
Low folate intake affects individuals with the 677TT genotype to a greater extent than those with the 677CC/CT genotypes. 677TT (but not 677CC/CT) individuals with lower plasma folate levels are at risk for elevated plasma homocysteine levels. [21] In studies of human recombinant MTHFR, the protein encoded by 677T loses its FAD cofactor three times faster than the wild-type protein. [22] 5-Methyl-THF slows the rate of FAD release in both the wild-type and mutant enzymes, although it is to a much greater extent in the mutant enzyme. [22] Low folate status with the consequent loss of FAD enhances the thermolability of the enzyme, thus providing an explanation for the normalised homocysteine and DNA methylation levels in folate-replete 677TT individuals.
This polymorphism and mild hyperhomocysteinemia are associated with neural tube defects in offspring, increased risk for complications of pregnancy other complications of pregnancy, [23] arterial and venous thrombosis, and cardiovascular disease. [24] 677TT individuals are at an increased risk for acute lymphoblastic leukemia [25] and colon cancer. [26]
Mutations in the MTHFR gene could be one of the factors leading to increased risk of developing schizophrenia. [27] Schizophrenic patients having the risk allele (T\T) show more deficiencies in executive function tasks. [28]
The C677T genotype used to be associated with increased risk of recurrent pregnancy loss (RPL) in non Caucasians, [29] however this link has been disproved in recent years.[ citation needed ] The American College of Medical Genetics recommendation guidelines currently state that people with recurrent pregnancy loss should not be tested for variants in the MTHFR gene.
There is also a tentative link between MTHFR mutations and dementia. One study of an elderly Japanese population [30] found correlations between the MTHFR 677CT mutation, an Apo E polymorphism, and certain types of senile dementia. Other research has found that individuals with folate-related mutations can still have a functional deficiency even when blood levels of folate are within the normal range, [31] and recommended supplementation of methyltetrahydrofolate to potentially prevent and treat dementia (along with depression). A 2011 study from China also found that the C677T SNP was associated with Alzheimer's disease in Asian populations (though not in Caucasians). [32]
C677T polymorphism is associated with risk of myocardial infarction in African, North American, and elderly populations. [33]
The CDC provides a web page with information on the "MTHFR Gene, Folic Acid, and Preventing Neural Tube Defects". National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. 15 June 2022. Retrieved 24 Sep 2023.
This section needs additional citations for verification .(February 2015) |
At nucleotide 1298 of the MTHFR, there are two possibilities: A or C. 1298A (leading to a Glu at amino acid 429) is the most common while 1298C (leading to an Ala substitution at amino acid 429) is less common. 1298AA is the "normal" homozygous, 1298AC the heterozygous, and 1298CC the homozygous for the "variant". In studies of human recombinant MTHFR, the protein encoded by 1298C cannot be distinguished from 1298A in terms of activity, thermolability, FAD release, or the protective effect of 5-methyl-THF. [22] The C mutation does not appear to affect the MTHFR protein. It does not result in thermolabile MTHFR and does not appear to affect homocysteine levels. It does, however, affect the conversion of MTHF to BH4 (tetrahydrobiopterin), an important cofactor in the production of neurotransmitters, and the synthesis of nitric oxide.[ citation needed ]
There has been some commentary on a 'reverse reaction' in which tetrahydrobiopterin (BH4) is produced when 5-methyltetrahydrofolate is converted back into methylenetetrahydrofolate. This however is not universally agreed upon. That reaction is thought to require 5-MTHF and SAMe.[ citation needed ] An alternative opinion is that 5-MTHF processes peroxynitrite, thereby preserving existing BH4, and that no such 'reverse reaction' occurs.
A maternal MTHFR A1298C polymorphism is associated with Down syndrome pregnancy. Subgroup and sensitivity analysis results showed that this polymorphism is a risk factor for Down syndrome pregnancy in Asian populations but not in Caucasian population as well as in overall meta-analysis. [34]
MTHFR A1298C may play a role as either a driver in the development of major depressive disorder or as a predictive or diagnostic marker, possibly in combination with C677T. [35]
A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction. [36]
Severe MTHFR deficiency is rare (about 50 cases worldwide) and caused by mutations resulting in 0–20% residual enzyme activity. [16] Patients exhibit developmental delay, motor and gait dysfunction, seizures, and neurological impairment and have extremely high levels of homocysteine in their plasma and urine as well as low to normal plasma methionine levels. This deficiency and mutations in MTHFR have also been linked to recessive spastic paraparesis with complex I deficiency. [37]
A study on the Chinese Uyghur population indicated that rs1801131 polymorphism in MTHFR was associated with nsCL/P in Chinese Uyghur population. Given the unique genetic and environmental characters of the Uyghur population, these findings may be helpful for exploring the pathogenesis of this complex disease. [38]
The MTHFR aberrant promoter hypermethylation is associated with male infertility. Furthermore, this improper epigenetic phenomenon was observed in semen samples of infertile males belonging to couples with a history of recurrent spontaneous abortion. [9] The MTHFR improper promoter hypermethylation may affect the two essential roles of DNA methylation in spermatogenetic cells, the global genome methylation process and the genomic imprinting of paternal genes. In addition, MTHFR gene promoter hypermethylation has also been associated with methylation loss at H19 imprinted gene in semen samples from infertile males. [10]
Inhibitors of MTHFR and antisense knockdown of the expression of the enzyme have been proposed as treatments for cancer. [39] The active form of folate, L-methylfolate, may be appropriate to target for conditions affected by MTHFR polymorphisms. [40]
The overall reaction catalyzed by MTHFR is illustrated on the right. The reaction uses an NAD(P)H hydride donor and an FAD cofactor. The E. coli enzyme has a strong preference for the NADH donor, whereas the mammalian enzyme is specific to NADPH.
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
With the growth of direct-to-consumer genetic testing, the alternative medicine industry has aggressively targeted a range of dubious tests [41] and highly profitable quack treatments for claimed MTHFR polymorphisms, despite the lack of any demonstrated health effects of these mutations. [42] The promotion of supplements and other treatments for MTHFR polymorphisms, especially centered on autistic spectrum disorder, [43] have been characterised as snake oil. Tests for MTHFR, while gaining popularity, are generally unnecessary because the association of MTHFR gene mutations with various diseases have not been established as clear-cut cause-and-effect relationship. [44]
Folate, also known as vitamin B9 and folacin, is one of the B vitamins. Manufactured folic acid, which is converted into folate by the body, is used as a dietary supplement and in food fortification as it is more stable during processing and storage. Folate is required for the body to make DNA and RNA and metabolise amino acids necessary for cell division. As the human body cannot make folate, it is required in the diet, making it an essential nutrient. It occurs naturally in many foods. The recommended adult daily intake of folate in the U.S. is 400 micrograms from foods or dietary supplements.
S-Adenosyl methionine (SAM), also known under the commercial names of SAMe, SAM-e, or AdoMet, is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM is produced and consumed in the liver. More than 40 methyl transfers from SAM are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase. SAM was first discovered by Giulio Cantoni in 1952.
Methionine synthase (MS, MeSe, MTR) is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.
Neural tube defects (NTDs) are a group of birth defects in which an opening in the spine or cranium remains from early in human development. In the third week of pregnancy called gastrulation, specialized cells on the dorsal side of the embryo begin to change shape and form the neural tube. When the neural tube does not close completely, an NTD develops.
Hyperhomocysteinemia is a medical condition characterized by an abnormally high level of total homocysteine in the blood, conventionally described as above 15 μmol/L.
Levomefolic acid (INN, also known as L-5-MTHF, L-methylfolate and L-5-methyltetrahydrofolate and (6S)-5-methyltetrahydrofolate, and (6S)-5-MTHF) is the primary biologically active form of folate used at the cellular level for DNA reproduction, the cysteine cycle and the regulation of homocysteine. It is also the form found in circulation and transported across membranes into tissues and across the blood–brain barrier. In the cell, L-methylfolate is used in the methylation of homocysteine to form methionine and tetrahydrofolate (THF). THF is the immediate acceptor of one carbon unit for the synthesis of thymidine-DNA, purines (RNA and DNA) and methionine. The un-methylated form, folic acid (vitamin B9), is a synthetic form of folate, and must undergo enzymatic reduction by dihydrofolate reductase (DHFR) to become biologically active.
5,10-Methylenetetrahydrofolate (N5,N10-Methylenetetrahydrofolate; 5,10-CH2-THF) is cofactor in several biochemical reactions. It exists in nature as the diastereoisomer [6R]-5,10-methylene-THF.
Phosphatidylethanolamine N-methyltransferase is a transferase enzyme which converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. In humans it is encoded by the PEMT gene within the Smith–Magenis syndrome region on chromosome 17.
In enzymology, a methylenetetrahydrofolate reductase (ferredoxin) (EC 1.5.7.1) is an enzyme that catalyzes the chemical reaction
Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.
Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) is a gene located in humans on chromosome 14 that encodes a protein, C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase, with three distinct enzymatic activities.
C677T or rs1801133 is a genetic variation—a single nucleotide polymorphism (SNP)—in the MTHFR gene.
Rima Rozen is a Canadian geneticist who is a professor at McGill University. Her current research focuses on genetic and nutritional deficiencies in folate metabolism and their impact on complex traits.
Haptocorrin (HC) also known as transcobalamin-1 (TC-1) or cobalophilin is a transcobalamin protein that in humans is encoded by the TCN1 gene. One essential function of haptocorrin is protection of the acid-sensitive vitamin B12 while it moves through the stomach. A second function is serum HC binding of the great majority of circulating vitamin B12, rendering it unavailable for take-up by cells. This is conjectured to be a circulating storage function.
Autism spectrum disorder (ASD) refers to a variety of conditions typically identified by challenges with social skills, communication, speech, and repetitive sensory-motor behaviors. The 11th International Classification of Diseases (ICD-11), released in January 2021, characterizes ASD by the associated deficits in the ability to initiate and sustain two-way social communication and restricted or repetitive behavior unusual for the individual's age or situation. Although linked with early childhood, the symptoms can appear later as well. Symptoms can be detected before the age of two and experienced practitioners can give a reliable diagnosis by that age. However, official diagnosis may not occur until much older, even well into adulthood. There is a large degree of variation in how much support a person with ASD needs in day-to-day life. This can be classified by a further diagnosis of ASD level 1, level 2, or level 3. Of these, ASD level 3 describes people requiring very substantial support and who experience more severe symptoms. ASD-related deficits in nonverbal and verbal social skills can result in impediments in personal, family, social, educational, and occupational situations. This disorder tends to have a strong correlation with genetics along with other factors. More research is identifying ways in which epigenetics is linked to autism. Epigenetics generally refers to the ways in which chromatin structure is altered to affect gene expression. Mechanisms such as cytosine regulation and post-translational modifications of histones. Of the 215 genes contributing, to some extent in ASD, 42 have been found to be involved in epigenetic modification of gene expression. Some examples of ASD signs are specific or repeated behaviors, enhanced sensitivity to materials, being upset by changes in routine, appearing to show reduced interest in others, avoiding eye contact and limitations in social situations, as well as verbal communication. When social interaction becomes more important, some whose condition might have been overlooked suffer social and other exclusion and are more likely to have coexisting mental and physical conditions. Long-term problems include difficulties in daily living such as managing schedules, hypersensitivities, initiating and sustaining relationships, and maintaining jobs.
In recent years it has become apparent that the environment and underlying mechanisms affect gene expression and the genome outside of the central dogma of biology. It has been found that many epigenetic mechanisms are involved in the regulation and expression of genes such as DNA methylation and chromatin remodeling. These epigenetic mechanisms are believed to be a contributing factor to pathological diseases such as type 2 diabetes. An understanding of the epigenome of diabetes patients may help to elucidate otherwise hidden causes of this disease.
Rowena Green Matthews, born in 1938, is the G. Robert Greenberg Distinguished University professor emeritus at the University of Michigan, Ann Arbor. Her research focuses on the role of organic cofactors as partners of enzymes catalyzing difficult biochemical reactions, especially folic acid and cobalamin. Among other honors, she was elected to the National Academy of Sciences in 2002 and the Institute of Medicine in 2004.
Methylenetetrahydrofolate reductase deficiency is the most common genetic cause of elevated serum levels of homocysteine (hyperhomocysteinemia). It is caused by genetic defects in MTHFR, which is an important enzyme in the methyl cycle.
2,4-dienoyl-CoA reductase 1 is a protein that in humans is encoded by the DECR1 gene.
Riboflavin-responsive exercise intolerance is a rare disorder caused by mutations of the SLC25A32 gene that encodes the mitochondrial folate transporter. Patients suffer from exercise intolerance and may have disrupted motor function.