L-gulonolactone oxidase

Last updated
GULOP
Identifiers
Aliases GULOP , GULO, SCURVY, gulonolactone (L-) oxidase, pseudogene
External IDs MGI: 1353434; GeneCards: GULOP; OMA:GULOP - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

NM_178747

RefSeq (protein)

n/a

NP_848862

Location (UCSC)n/a Chr 14: 66.22 – 66.25 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse
L-gulonolactone oxidase
Identifiers
EC no. 1.1.3.8
CAS no. 9028-78-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

L-Gulonolactone oxidase (EC 1.1.3.8) is an enzyme that produces vitamin C. It is expressed in mice and rats, but is non-functional in Haplorrhini (a suborder of primates, including humans), in some bats, and in guinea pigs. It catalyzes the reaction of L-gulono-1,4-lactone with oxygen to form L-xylo-hex-3-gulonolactone (2-keto-gulono-γ-lactone) and hydrogen peroxide. It uses FAD as a cofactor. The L-xylo-hex-3-gulonolactone then converts to ascorbic acid spontaneously, without enzymatic action.The structure of L-gulonolactone oxidase in rats helps identify characteristics of this enzyme.

Contents

Gulonolactone oxidase deficiency

The non-functional gulonolactone oxidase pseudogene (GULOP) was mapped to human chromosome 8p21, which corresponds to an evolutionarily conserved segment on either porcine chromosome 4 (SSC4) or 14 (SSC14). [4] [5] [6] GULO produces the precursor to ascorbic acid, which spontaneously converts to the vitamin itself.

The loss of activity of the gene encoding L-gulonolactone oxidase (GULO) has occurred separately in the history of several species. GULO activity has been lost in some species of bats, but others retain it. [7] The loss of this enzyme activity is responsible for the inability of guinea pigs to enzymatically synthesize vitamin C. Both these events happened independently of the loss in the haplorrhine suborder of primates, which includes humans.

The remnant of this non-functional gene with many mutations is still present in the genomes of guinea pigs and humans. [8] It is unknown if remains of the gene exist in the bats who lack GULO activity. The function of GULO appears to have been lost several times, and possibly re-acquired, in several lines of passerine birds, where ability to make vitamin C varies from species to species. [9]

Loss of GULO activity in the primate order occurred about 63 million years ago, at about the time it split into the suborders Haplorhini (which lost the enzyme activity) and Strepsirrhini (which retained it). The haplorhine ("simple-nosed") primates, which cannot make vitamin C enzymatically, include the tarsiers and the simians (apes, monkeys and humans). The strepsirrhine ("bent-nosed" or "wet-nosed") primates, which can still make vitamin C enzymatically, include lorises, galagos, pottos, and, to some extent, lemurs. [10]

L-Gulonolactone oxidase deficiency has been called "hypoascorbemia" [11] and is described by OMIM (Online Mendelian Inheritance in Man) [12] as "a public inborn error of metabolism", as it affects all humans. There exists a wide discrepancy between the amounts of ascorbic acid other primates consume and what are recommended as "reference intakes" for humans. [13] In its patently pathological form, the effects of ascorbate deficiency are manifested as scurvy.

Consequences of loss

It is likely that some level of adaptation occurred after the loss of the GULO gene by primates. Erythrocyte Glut1 and associated dehydroascorbic acid uptake modulated by stomatin switch are unique traits of humans and the few other mammals that have lost the ability to synthesize ascorbic acid from glucose. [14] As GLUT transporters and stomatin are ubiquitously distributed in different human cell types and tissues, similar interactions may occur in human cells other than erythrocytes. [15]

Linus Pauling observed that after the loss of endogenous ascorbate production, apo(a) and Lp(a) were greatly favored by evolution, acting as ascorbate surrogate, since the frequency of occurrence of elevated Lp(a) plasma levels in species that had lost the ability to synthesize ascorbate is great. [16] Also, only primates share regulation of CAMP gene expression by vitamin D, which occurred after the loss of GULO gene. [17]

Johnson et al. have hypothesized that the mutation of the GULOP pseudogene so that it stopped producing GULO may have been of benefit to early primates by increasing uric acid levels and enhancing fructose effects on weight gain and fat accumulation. With a shortage of food supplies this gave mutants a survival advantage. [18]

Animal models

Studies of human diseases have benefited from the availability of small laboratory animal models. However, the tissues of animal models with a GULO gene generally have high levels of ascorbic acid and so are often only slightly influenced by exogenous vitamin C. This is a major handicap for studies involving the endogenous redox systems of primates and other animals that lack this gene.

Guinea pigs are a popular human model. They lost the ability to make GULO 20 million years ago. [8]

In 1999, Maeda et al. genetically engineered mice with inactivated GULO gene. The mutant mice, like humans, entirely depend on dietary vitamin C, and they show changes indicating that the integrity of their vasculature is compromised. [19] GULO–/– mice have been used as a human model in multiple subsequent studies. [20]

There have been successful attempts to activate lost enzymatic function in different animal species. [21] [22] [23] [24] Various GULO mutants were also identified. [25] [26]

Plant models

In plants, the importance of vitamin C in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis thaliana , potato, tobacco, tomato, and rice. Elevating vitamin C content by overexpressing inositol oxygenase and gulono-1,4-lactone oxidase in A. thaliana leads to enhanced biomass and tolerance to abiotic stresses. [27] [28]

L-gulonolactone oxidase in rats

L-gulonolactone oxidase protein of a rat. The magenta color shows the B-sheets that are present in the protein. The blue color represents the alpha helices that make up the structure of L-gulonolactone oxidase. Lime green is showing the N-terminus. Red is displaying the C-terminus end of the protein. L-gulonolactone oxidase structure.png
L-gulonolactone oxidase protein of a rat. The magenta color shows the B-sheets that are present in the protein. The blue color represents the alpha helices that make up the structure of  L-gulonolactone oxidase. Lime green is showing the N-terminus. Red is displaying the C-terminus end of the protein.

L-gulonolactone oxidase (GULO) is an enzyme that helps catalyze the production of ascorbic acid aka vitamin C. Mammals such as humans and guinea pigs do not express this gene due to multiple mutations in a specific exon. [29] These mutations correlate to nucleotide substitution. [30] Rats are a species that do express L-gulonolactone oxidase with a specific gene transcript. The protein coding region of the gene 645 base-pairs long, with eight exons and seven introns. [29] The amino acid sequence of this protein has suggested that rat L-Gulonolactone oxidase is located in the membrane portion of the endoplasmic reticulum due to its multiple B-sheet structure which contains hydrophobic areas. [31] It has been determined that rat GULO has a prosthetic domain in the N-terminus, flavian adenine dinucleotide. [31] The only substrates that can make this rat enzyme function are L-GalL and L-GulL. [31]

GULO belongs to a family of sugar-1,4-lactone oxidases, which also contains the yeast enzyme D -arabinono-1,4-lactone oxidase (ALO). ALO produces erythorbic acid when acting on its canonical substrate. This family is in turn a subfamily under more sugar-1,4-lactone oxidases, which also includes the bacterial L-gulono-1,4-lactone dehydrogenase and the plant galactonolactone dehydrogenase. [32] All these aldonolactone oxidoreductases play a role in some form of vitamin C synthesis, and some (including GULO and ALO) accept substrates of other members. [33]

See also

Related Research Articles

<span class="mw-page-title-main">Chemistry of ascorbic acid</span> Chemical compound

Ascorbic acid is an organic compound with formula C
6
H
8
O
6
, originally called hexuronic acid. It is a white solid, but impure samples can appear yellowish. It dissolves freely in water to give mildly acidic solutions. It is a mild reducing agent.

<span class="mw-page-title-main">Scurvy</span> Disease resulting from a lack of vitamin C

Scurvy is a disease resulting from a lack of vitamin C. Early symptoms of deficiency include weakness, fatigue, and sore arms and legs. Without treatment, decreased red blood cells, gum disease, changes to hair, and bleeding from the skin may occur. As scurvy worsens, there can be poor wound healing, personality changes, and finally death from infection or bleeding.

<span class="mw-page-title-main">Uric acid</span> Organic compound

Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown of purine nucleotides, and it is a normal component of urine. High blood concentrations of uric acid can lead to gout and are associated with other medical conditions, including diabetes and the formation of ammonium acid urate kidney stones.

<span class="mw-page-title-main">Vitamin C</span> Essential nutrient found in citrus fruits and other foods

Vitamin C is a water-soluble vitamin found in citrus and other fruits, berries and vegetables. It is also a generic prescription medication and in some countries is sold as a non-prescription dietary supplement. As a therapy, it is used to prevent and treat scurvy, a disease caused by vitamin C deficiency.

<span class="mw-page-title-main">Pseudogene</span> Functionless relative of a gene

Pseudogenes are nonfunctional segments of DNA that resemble functional genes. Most arise as superfluous copies of functional genes, either directly by gene duplication or indirectly by reverse transcription of an mRNA transcript. Pseudogenes are usually identified when genome sequence analysis finds gene-like sequences that lack regulatory sequences needed for transcription or translation, or whose coding sequences are obviously defective due to frameshifts or premature stop codons. Pseudogenes are a type of junk DNA.

The argument from poor design, also known as the dysteleological argument, is an argument against the assumption of the existence of a creator God, based on the reasoning that any omnipotent and omnibenevolent deity or deities would not create organisms with the perceived suboptimal designs that occur in nature.

Dehydroascorbic acid (DHA) is an oxidized form of ascorbic acid. It is actively imported into the endoplasmic reticulum of cells via glucose transporters. It is trapped therein by reduction back to ascorbate by glutathione and other thiols. The (free) chemical radical semidehydroascorbic acid (SDA) also belongs to the group of oxidized ascorbic acids.

<span class="mw-page-title-main">Glucuronic acid</span> Sugar acid

Glucuronic acid is a uronic acid that was first isolated from urine. It is found in many gums such as gum arabic, xanthan, and kombucha tea and is important for the metabolism of microorganisms, plants and animals.

<span class="mw-page-title-main">Vitamin C megadosage</span> Consumption or injection of very large doses of vitamin C

Vitamin C megadosage is a term describing the consumption or injection of vitamin C in doses well beyond the current United States Recommended Dietary Allowance of 90 milligrams per day, and often well beyond the tolerable upper intake level of 2,000 milligrams per day. There is no strong scientific evidence that vitamin C megadosage helps to cure or prevent cancer, the common cold, or some other medical conditions. More recent studies do show that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses.

Polyphenol oxidase, an enzyme involved in fruit browning, is a tetramer that contains four atoms of copper per molecule.

In enzymology, a glucuronolactone reductase (EC 1.1.1.20) is an enzyme that catalyzes the chemical reaction

In enzymology, a L-galactonolactone oxidase (EC 1.3.3.12) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Dopamine beta-hydroxylase</span> Mammalian protein found in Homo sapiens

Dopamine beta-hydroxylase (DBH), also known as dopamine beta-monooxygenase, is an enzyme that in humans is encoded by the DBH gene. Dopamine beta-hydroxylase catalyzes the conversion of dopamine to norepinephrine.

<span class="mw-page-title-main">CYP4F2</span> Enzyme protein in the species Homo sapiens

Cytochrome P450 4F2 is a protein that in humans is encoded by the CYP4F2 gene. This protein is an enzyme, a type of protein that catalyzes chemical reactions inside cells. This specific enzyme is part of the superfamily of cytochrome P450 (CYP) enzymes, and the encoding gene is part of a cluster of cytochrome P450 genes located on chromosome 19.

A conserved non-coding sequence (CNS) is a DNA sequence of noncoding DNA that is evolutionarily conserved. These sequences are of interest for their potential to regulate gene production.

<i>Why Evolution is True</i> Popular science book

Why Evolution is True is a popular science book by American biologist Jerry Coyne. It was published in 2009, dubbed "Darwin Year" as it marked the bicentennial of Charles Darwin and the hundred and fiftieth anniversary of the publication of his On the Origin of Species By Means of Natural Selection. Coyne examines the evidence for evolution, some of which was known to Darwin (biogeography) and some of which has emerged in recent years. The book was a New York Times bestseller, and reviewers praised the logic of Coyne's arguments and the clarity of his prose. It was reprinted as part of the Oxford Landmark Science series.

L-galactonolactone dehydrogenase (EC 1.3.2.3, galactonolactone dehydrogenase, L-galactono-gamma-lactone dehydrogenase, L-galactono-gamma-lactone:ferricytochrome-c oxidoreductase, GLDHase, GLDase) is an enzyme with systematic name L-galactono-1,4-lactone:ferricytochrome-c oxidoreductase. This enzyme catalyses the following chemical reaction

GDP-L-galactose phosphorylase is an enzyme with systematic name GDP:alpha-L-galactose 1-phosphate guanylyltransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Intravenous ascorbic acid</span> Nonmedical procedure

Intravenous Ascorbic Acid or PAA, pharmacologic ascorbic acid, is a process that delivers soluble ascorbic acid directly into the bloodstream. It is not approved for use to treat any medical condition.

<span class="mw-page-title-main">Ascorbyl glucoside</span> Chemical compound

Ascorbyl glucoside (AA-2G) is an ascorbic acid derivative that contains at least one glycosyl group. Ascorbyl glucoside is commonly used in cosmetic products to administer vitamin C topically. Ascorbyl glucoside exhibits superior stability and penetration ability compared to ascorbyl phosphate salts, but the rate of its in vivo conversion to ascorbic acid is not known. Ascorbyl glucosides such as AA-2G, like many other derivatives of the ascorbic acid, show antiscorbutic effects. It is also sometimes used in skin whitening products.

References

  1. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000034450 Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. GULOP Archived 2007-09-27 at the Wayback Machine – iHOP
  5. Nishikimi M, Koshizaka T, Ozawa T, Yagi K (December 1988). "Occurrence in humans and guinea pigs of the gene related to their missing enzyme L-gulono-gamma-lactone oxidase". Archives of Biochemistry and Biophysics. 267 (2): 842–6. doi:10.1016/0003-9861(88)90093-8. PMID   3214183.
  6. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (May 1994). "Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man". The Journal of Biological Chemistry. 269 (18): 13685–8. doi: 10.1016/S0021-9258(17)36884-9 . PMID   8175804.
  7. Cui J, Pan YH, Zhang Y, Jones G, Zhang S (February 2011). "Progressive pseudogenization: vitamin C synthesis and its loss in bats". Molecular Biology and Evolution. 28 (2): 1025–31. doi: 10.1093/molbev/msq286 . PMID   21037206.
  8. 1 2 Nishikimi M, Kawai T, Yagi K (October 1992). "Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species". The Journal of Biological Chemistry. 267 (30): 21967–72. doi: 10.1016/S0021-9258(19)36707-9 . PMID   1400507.
  9. Martinez del Rio C (1997). "Can Passerines Synthesize Vitamin C?" (PDF). The Auk. 114 (3): 513–516. doi:10.2307/4089257. JSTOR   4089257.
  10. Pollock JI, Mullin RJ (May 1987). "Vitamin C biosynthesis in prosimians: evidence for the anthropoid affinity of Tarsius". American Journal of Physical Anthropology. 73 (1): 65–70. doi:10.1002/ajpa.1330730106. PMID   3113259.
  11. HYPOASCORBEMIA – NCBI
  12. OMIM – Online Mendelian Inheritance in Man – NCBI
  13. Milton K (September 2003). "Micronutrient intakes of wild primates: are humans different?" (PDF). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology. 136 (1): 47–59. doi:10.1016/S1095-6433(03)00084-9. PMID   14527629.
  14. Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini JL, Delaunay J, Sitbon M, Taylor N (March 2008). "Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C". Cell. 132 (6): 1039–48. doi: 10.1016/j.cell.2008.01.042 . PMID   18358815.
  15. Mandl J, Szarka A, Bánhegyi G (August 2009). "Vitamin C: update on physiology and pharmacology". British Journal of Pharmacology. 157 (7): 1097–110. doi:10.1111/j.1476-5381.2009.00282.x. PMC   2743829 . PMID   19508394.
  16. Pauling L, Rath (1992). "A Unified Theory of Human Cardiovascular Disease" (PDF). Journal of Orthomolecular Medicine. 7 (1).
  17. Gombart AF (November 2009). "The vitamin D-antimicrobial peptide pathway and its role in protection against infection". Future Microbiology. 4 (9): 1151–65. doi:10.2217/fmb.09.87. PMC   2821804 . PMID   19895218.
  18. Johnson RJ, Andrews P, Benner SA, Oliver W (2010). "Theodore E. Woodward award. The evolution of obesity: insights from the mid-Miocene". Transactions of the American Clinical and Climatological Association. 121: 295–305, discussion 305–8. PMC   2917125 . PMID   20697570.
  19. Maeda N, Hagihara H, Nakata Y, Hiller S, Wilder J, Reddick R (January 2000). "Aortic wall damage in mice unable to synthesize ascorbic acid". Proceedings of the National Academy of Sciences of the United States of America. 97 (2): 841–6. Bibcode:2000PNAS...97..841M. doi: 10.1073/pnas.97.2.841 . PMC   15418 . PMID   10639167.
  20. Li Y, Schellhorn HE (October 2007). "New developments and novel therapeutic perspectives for vitamin C". The Journal of Nutrition. 137 (10): 2171–84. doi: 10.1093/jn/137.10.2171 . PMID   17884994.
  21. Toyohara H, Nakata T, Touhata K, Hashimoto H, Kinoshita M, Sakaguchi M, Nishikimi M, Yagi K, Wakamatsu Y, Ozato K (June 1996). "Transgenic expression of L-gulono-gamma-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for L-ascorbic acid biosynthesis". Biochemical and Biophysical Research Communications. 223 (3): 650–3. doi:10.1006/bbrc.1996.0949. PMID   8687450.
  22. Li Y, Shi CX, Mossman KL, Rosenfeld J, Boo YC, Schellhorn HE (December 2008). "Restoration of vitamin C synthesis in transgenic Gulo-/- mice by helper-dependent adenovirus-based expression of gulonolactone oxidase". Human Gene Therapy. 19 (12): 1349–58. doi:10.1089/hgt.2008.106. PMID   18764764.
  23. Ha MN, Graham FL, D'Souza CK, Muller WJ, Igdoura SA, Schellhorn HE (March 2004). "Functional rescue of vitamin C synthesis deficiency in human cells using adenoviral-based expression of murine l-gulono-gamma-lactone oxidase". Genomics. 83 (3): 482–92. doi:10.1016/j.ygeno.2003.08.018. PMID   14962674.
  24. Yu, Rosemary. "DEVELOPMENT OF ROBUST ANIMAL MODELS FOR VITAMIN C FUNCTION". Open Access Dissertations and Theses. McMaster University Library. Archived from the original on 13 May 2013. Retrieved 8 February 2013.
  25. Hasan L, Vögeli P, Stoll P, Kramer SS, Stranzinger G, Neuenschwander S (April 2004). "Intragenic deletion in the gene encoding L-gulonolactone oxidase causes vitamin C deficiency in pigs" (PDF). Mammalian Genome. 15 (4): 323–33. doi:10.1007/s00335-003-2324-6. hdl: 20.500.11850/422871 . PMID   15112110. S2CID   23479620.
  26. Mohan S, Kapoor A, Singgih A, Zhang Z, Taylor T, Yu H, Chadwick RB, Chung YS, Chung YS, Donahue LR, Rosen C, Crawford GC, Wergedal J, Baylink DJ (September 2005). "Spontaneous fractures in the mouse mutant sfx are caused by deletion of the gulonolactone oxidase gene, causing vitamin C deficiency". Journal of Bone and Mineral Research. 20 (9): 1597–610. doi:10.1359/JBMR.050406. PMID   16059632. S2CID   28699531.
  27. Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (December 2013). "Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses". In Vitro Cellular & Developmental Biology. Plant. 49 (6): 643–655. doi:10.1007/s11627-013-9568-y. PMC   4354779 . PMID   25767369.
  28. Radzio JA, Lorence A, Chevone BI, Nessler CL (December 2003). "L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants". Plant Molecular Biology. 53 (6): 837–44. doi:10.1023/B:PLAN.0000023671.99451.1d. PMID   15082929. S2CID   37821860.
  29. 1 2 Yue, Xiaojing; Rao, Anjana (2020-09-17). "TET family dioxygenases and the TET activator vitamin C in immune responses and cancer". Blood. 136 (12): 1394–1401. doi:10.1182/blood.2019004158. ISSN   0006-4971. PMC   7498365 . PMID   32730592.
  30. Aboobucker, Siddique I.; Lorence, Argelia (2016-01-01). "Recent progress on the characterization of aldonolactone oxidoreductases". Plant Physiology and Biochemistry. 98: 171–185. doi:10.1016/j.plaphy.2015.11.017. ISSN   0981-9428. PMC   4725720 . PMID   26696130.
  31. 1 2 3 Paciolla, Costantino; Fortunato, Stefania; Dipierro, Nunzio; Paradiso, Annalisa; De Leonardis, Silvana; Mastropasqua, Linda; de Pinto, Maria Concetta (November 2019). "Vitamin C in Plants: From Functions to Biofortification". Antioxidants. 8 (11): 519. doi: 10.3390/antiox8110519 . ISSN   2076-3921. PMC   6912510 . PMID   31671820.
  32. "L-gulonolactone/D-arabinono-1,4-lactone oxidase (IPR010031)". InterPro. Retrieved 3 February 2020.
  33. Aboobucker, SI; Lorence, A (January 2016). "Recent progress on the characterization of aldonolactone oxidoreductases". Plant Physiology and Biochemistry. 98: 171–85. doi:10.1016/j.plaphy.2015.11.017. PMC   4725720 . PMID   26696130.

Further reading