Mitochondrial matrix

Last updated
Cell biology
mitochondrion
Mitochondrion mini.svg
Components of a typical mitochondrion

1 Outer membrane

1.1 Porin

2 Intermembrane space

2.1 Intracristal space
2.2 Peripheral space

3 Lamella

3.1 Inner membrane
3.11 Inner boundary membrane
3.12 Cristal membrane
3.2 Matrix  You are here
3.3 Cristæ

4 Mitochondrial DNA
5 Matrix granule
6 Ribosome
7 ATP synthase

Contents


In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids. [1]

The composition of the matrix based on its structures and contents produce an environment that allows the anabolic and catabolic pathways to proceed favorably. The electron transport chain and enzymes in the matrix play a large role in the citric acid cycle and oxidative phosphorylation. The citric acid cycle produces NADH and FADH2 through oxidation that will be reduced in oxidative phosphorylation to produce ATP. [2] [3]

The cytosolic, intermembrane space, compartment has a higher aqueous:protein content of around 3.8 μL/mg protein relative to that occurring in mitochondrial matrix where such levels typically are near 0.8 μL/mg protein. [4] It is not known how mitochondria maintain osmotic balance across the inner mitochondrial membrane, although the membrane contains aquaporins that are believed to be conduits for regulated water transport. Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell. It is rich in guanine and cytosine content, and in humans is maternally derived. Mitochondria of mammals have 55s ribosomes.

Composition

Metabolites

The matrix is host to a wide variety of metabolites involved in processes within the matrix. The citric acid cycle involves acyl-CoA, pyruvate, acetyl-CoA, citrate, isocitrate, α-ketoglutarate, succinyl-CoA, fumarate, succinate, L-malate, and oxaloacetate. [2] The urea cycle makes use of [[ornithineL-ornithine]], carbamoyl phosphate, and L-citrulline. [4] The electron transport chain oxidizes coenzymes NADH and FADH2. Protein synthesis makes use of mitochondrial DNA, RNA, and tRNA. [5] Regulation of processes makes use of ions (Ca2+/K+/Mg+). [6] Additional metabolites present in the matrix are CO2 , H2O, O2 , ATP, ADP, and Pi. [1]

Enzymes

Enzymes from processes that take place in the matrix. The citric acid cycle is facilitated by pyruvate dehydrogenase, citrate synthase, aconitase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinyl-CoA synthetase, fumarase, and malate dehydrogenase. [2] The urea cycle is facilitated by carbamoyl phosphate synthetase I and ornithine transcarbamylase. [4] β-Oxidation uses pyruvate carboxylase, acyl-CoA dehydrogenase, and β-ketothiolase. [1] Amino acid production is facilitated by transaminases. [7] Amino acid metabolism is mediated by proteases, such as presequence protease. [8]

Inner membrane components

The inner membrane is a phospholipid bilayer that contains the complexes of oxidative phosphorylation. which contains the electron transport chain that is found on the cristae of the inner membrane and consists of four protein complexes and ATP synthase. These complexes are complex I (NADH:coenzyme Q oxidoreductase), complex II (succinate:coenzyme Q oxidoreductase), complex III (coenzyme Q: cytochrome c oxidoreductase), and complex IV (cytochrome c oxidase). [6]

Inner membrane control over matrix composition

The electron transport chain is responsible for establishing a pH and electrochemical gradient that facilitates the production of ATP through the pumping of protons. The gradient also provides control of the concentration of ions such as Ca2+ driven by the mitochondrial membrane potential. [1] The membrane only allows nonpolar molecules such as CO2 and O2 and small non charged polar molecules such as H2O to enter the matrix. Molecules enter and exit the mitochondrial matrix through transport proteins and ion transporters. Molecules are then able to leave the mitochondria through porin. [9] These attributed characteristics allow for control over concentrations of ions and metabolites necessary for regulation and determines the rate of ATP production. [10] [11]

Processes

Citric acid cycle

Following glycolysis, the citric acid cycle is activated by the production of acetyl-CoA. The oxidation of pyruvate by pyruvate dehydrogenase in the matrix produces CO2, acetyl-CoA, and NADH. Beta oxidation of fatty acids serves as an alternate catabolic pathway that produces acetyl-CoA, NADH, and FADH2. [1] The production of acetyl-CoA begins the citric acid cycle while the co-enzymes produced are used in the electron transport chain. [11]

ATP synthesis as seen from the perspective of the matrix. Conditions produced by the relationships between the catabolic pathways (citric acid cycle and oxidative phosphorylation) and structural makeup (lipid bilayer and electron transport chain) of matrix facilitate ATP synthesis. Mitochondrial electron transport chain--Etc4.svg
ATP synthesis as seen from the perspective of the matrix. Conditions produced by the relationships between the catabolic pathways (citric acid cycle and oxidative phosphorylation) and structural makeup (lipid bilayer and electron transport chain) of matrix facilitate ATP synthesis.

All of the enzymes for the citric acid cycle are in the matrix (e.g. citrate synthase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, fumarase, and malate dehydrogenase ) except for succinate dehydrogenase which is on the inner membrane and is part of protein complex II in the electron transport chain. The cycle produces coenzymes NADH and FADH2 through the oxidation of carbons in two cycles. The oxidation of NADH and FADH2 produces GTP from succinyl-CoA synthetase. [2]

Oxidative phosphorylation

NADH and FADH2 are produced in the matrix or transported in through porin and transport proteins in order to undergo oxidation through oxidative phosphorylation. [1] NADH and FADH2 undergo oxidation in the electron transport chain by transferring an electrons to regenerate NAD+ and FAD. Protons are pulled into the intermembrane space by the energy of the electrons going through the electron transport chain. Four electrons are finally accepted by oxygen in the matrix to complete the electron transport chain. The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix favorably. [6]

Urea cycle

The first two steps of the urea cycle take place within the mitochondrial matrix of liver and kidney cells. In the first step ammonia is converted into carbamoyl phosphate through the investment of two ATP molecules. This step is facilitated by carbamoyl phosphate synthetase I. The second step facilitated by ornithine transcarbamylase converts carbamoyl phosphate and ornithine into citrulline. After these initial steps the urea cycle continues in the inner membrane space until ornithine once again enters the matrix through a transport channel to continue the first to steps within matrix. [12]

Transamination

α-Ketoglutarate and oxaloacetate can be converted into amino acids within the matrix through the process of transamination. These reactions are facilitated by transaminases in order to produce aspartate and asparagine from oxaloacetate. Transamination of α-ketoglutarate produces glutamate, proline, and arginine. These amino acids are then used either within the matrix or transported into the cytosol to produce proteins. [7] [13]

Regulation

Regulation within the matrix is primarily controlled by ion concentration, metabolite concentration and energy charge. Availability of ions such as Ca2+ control various functions of the citric acid cycle. in the matrix activates pyruvate dehydrogenase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase which increases the reaction rate in the cycle. [14] Concentration of intermediates and coenzymes in the matrix also increase or decrease the rate of ATP production due to anaplerotic and cataplerotic effects. NADH can act as an inhibitor for α-ketoglutarate, isocitrate dehydrogenase, citrate synthase, and pyruvate dehydrogenase. The concentration of oxaloacetate in particular is kept low, so any fluctuations in this concentrations serve to drive the citric acid cycle forward. [2] The production of ATP also serves as a means of regulation by acting as an inhibitor for isocitrate dehydrogenase, pyruvate dehydrogenase, the electron transport chain protein complexes, and ATP synthase. ADP acts as an activator. [1]

Protein synthesis

The mitochondria contains its own set of DNA used to produce proteins found in the electron transport chain. The mitochondrial DNA only codes for about thirteen proteins that are used in processing mitochondrial transcripts, ribosomal proteins, ribosomal RNA, transfer RNA, and protein subunits found in the protein complexes of the electron transport chain. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.

<span class="mw-page-title-main">Citric acid cycle</span> Chemical reactions to release energy in cells

The citric acid cycle (CAC)—also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism and may have originated abiogenically. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Mitochondrion</span> Organelle in eukaryotic cells responsible for respiration

A mitochondrion is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. They were discovered by Albert von Kölliker in 1857 in the voluntary muscles of insects. The term mitochondrion was coined by Carl Benda in 1898. The mitochondrion is popularly nicknamed the "powerhouse of the cell", a phrase coined by Philip Siekevitz in a 1957 article of the same name.

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

<span class="mw-page-title-main">Adenosine diphosphate</span> Chemical compound

Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon.

<span class="mw-page-title-main">Electron transport chain</span> Energy-producing metabolic pathway

An electron transport chain (ETC) is a series of protein complexes and other molecules that transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. The electrons that transferred from NADH and FADH2 to the ETC involves four multi-subunit large enzymes complexes and two mobile electron carriers. Many of the enzymes in the electron transport chain are membrane-bound.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

<span class="mw-page-title-main">Crista</span> Fold in the inner membrane of a mitochondrion

A crista is a fold in the inner membrane of a mitochondrion. The name is from the Latin for crest or plume, and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on. This aids aerobic cellular respiration, because the mitochondrion requires oxygen. Cristae are studded with proteins, including ATP synthase and a variety of cytochromes.

Digestion is the breakdown of carbohydrates to yield an energy-rich compound called ATP. The production of ATP is achieved through the oxidation of glucose molecules. In oxidation, the electrons are stripped from a glucose molecule to reduce NAD+ and FAD. NAD+ and FAD possess a high energy potential to drive the production of ATP in the electron transport chain. ATP production occurs in the mitochondria of the cell. There are two methods of producing ATP: aerobic and anaerobic. In aerobic respiration, oxygen is required. Using oxygen increases ATP production from 4 ATP molecules to about 30 ATP molecules. In anaerobic respiration, oxygen is not required. When oxygen is absent, the generation of ATP continues through fermentation. There are two types of fermentation: alcohol fermentation and lactic acid fermentation.

The term amphibolic is used to describe a biochemical pathway that involves both catabolism and anabolism. Catabolism is a degradative phase of metabolism in which large molecules are converted into smaller and simpler molecules, which involves two types of reactions. First, hydrolysis reactions, in which catabolism is the breaking apart of molecules into smaller molecules to release energy. Examples of catabolic reactions are digestion and cellular respiration, where sugars and fats are broken down for energy. Breaking down a protein into amino acids, or a triglyceride into fatty acids, or a disaccharide into monosaccharides are all hydrolysis or catabolic reactions. Second, oxidation reactions involve the removal of hydrogens and electrons from an organic molecule. Anabolism is the biosynthesis phase of metabolism in which smaller simple precursors are converted to large and complex molecules of the cell. Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids. The second are reduction reactions, in which hydrogens and electrons are added to a molecule. Whenever that is done, molecules gain energy.

<span class="mw-page-title-main">Chemiosmosis</span> Electrochemical principle that enables cellular respiration

Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient. An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

<span class="mw-page-title-main">Oxaloacetic acid</span> Organic compound

Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the urea cycle, the glyoxylate cycle, amino acid synthesis, fatty acid synthesis and the citric acid cycle.

The oxoglutarate dehydrogenase complex (OGDC) or α-ketoglutarate dehydrogenase complex is an enzyme complex, most commonly known for its role in the citric acid cycle.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

<span class="mw-page-title-main">Beta oxidation</span> Process of fatty acid breakdown

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2, which are co-enzymes used in the electron transport chain. It is named as such because the beta carbon of the fatty acid undergoes oxidation to a carbonyl group. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Inner mitochondrial membrane</span>

The inner mitochondrial membrane (IMM) is the mitochondrial membrane which separates the mitochondrial matrix from the intermembrane space.

<span class="mw-page-title-main">Malate-aspartate shuttle</span> Biochemical system for transporting electrons produced during glycolysis

The malate-aspartate shuttle is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes. These electrons enter the electron transport chain of the mitochondria via reduction equivalents to generate ATP. The shuttle system is required because the mitochondrial inner membrane is impermeable to NADH, the primary reducing equivalent of the electron transport chain. To circumvent this, malate carries the reducing equivalents across the membrane.

<span class="mw-page-title-main">Acyl-CoA</span>

Acyl-CoA is a group of coenzymes that metabolize fatty acids. Acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the universal biochemical energy carrier.

Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. It includes three major steps:

The citrate-malate shuttle is a series of chemical reactions – commonly referred to as a biochemical cycle or system – that transports acetyl-CoA in the mitochondrial matrix across the inner and outer mitochondrial membrane for fatty acid synthesis. Mitochondria, also known as the powerhouse of a cell, is enclosed in a double membrane. As the inner mitochondrial membrane is impermeable to acetyl-CoA, the shuttle system is essential to fatty acid synthesis in the cytosol. It plays an important role in the generation of lipids in the liver.

References

  1. 1 2 3 4 5 6 7 Voet, Donald; Voet, Judith; Pratt, Charlotte (2013). Fundamentals of Biochemistry Life at the Molecular Level. New York City: John Wiley & Sons, Inc. pp. 582–584. ISBN   978-1118129180.
  2. 1 2 3 4 5 Stryer, L; Berg, J; Tymoczko, JL (2002). Biochemistry. San Francisco: W.H. Freeman. pp. 509–527, 569–579, 614–616, 638–641, 732–735, 739–748, 770–773. ISBN   978-0-7167-4684-3.
  3. Mitchell, Peter; Moyle, Jennifer (1967-01-14). "Chemiosmotic Hypothesis of Oxidative Phosphorylation". Nature. 213 (5072): 137–139. Bibcode:1967Natur.213..137M. doi:10.1038/213137a0. PMID   4291593. S2CID   4149605.
  4. 1 2 3 Soboll, S; Scholz, R; Freisl, M; Elbers, R; Heldt, H.W. (1976). Distribution of metabolites between mitochondria and cytosol of perfused liver. New york: Elsevier. pp. 29–40. ISBN   978-0-444-10925-5.
  5. 1 2 Porcelli, Anna Maria; Ghelli, Anna; Zanna, Claudia; Pinton, Paolo; Rizzuto, Rosario; Rugolo, Michela (2005-01-28). "pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant". Biochemical and Biophysical Research Communications. 326 (4): 799–804. doi:10.1016/j.bbrc.2004.11.105. PMID   15607740.
  6. 1 2 3 Dimroth, P.; Kaim, G.; Matthey, U. (2000-01-01). "Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases". The Journal of Experimental Biology. 203 (Pt 1): 51–59. doi:10.1242/jeb.203.1.51. ISSN   0022-0949. PMID   10600673.
  7. 1 2 Karmen, A.; Wroblewski, F.; Ladue, J. S. (1955-01-01). "Transaminase activity in human blood". The Journal of Clinical Investigation. 34 (1): 126–131. doi:10.1172/JCI103055. ISSN   0021-9738. PMC   438594 . PMID   13221663.
  8. King, John V.; Liang, Wenguang G.; Scherpelz, Kathryn P.; Schilling, Alexander B.; Meredith, Stephen C.; Tang, Wei-Jen (2014-07-08). "Molecular basis of substrate recognition and degradation by human presequence protease". Structure. 22 (7): 996–1007. doi:10.1016/j.str.2014.05.003. ISSN   1878-4186. PMC   4128088 . PMID   24931469.
  9. Alberts, Bruce; Johnson, Alexander; Lewis, julian; Roberts, Keith; Peters, Walter; Raff, Martin (1994). Molecular Biology of the Cell. New york: Garland Publishing Inc. ISBN   978-0-8153-3218-3.
  10. Anderson, S.; Bankier, A. T.; Barrell, B. G.; de Bruijn, M. H. L.; Coulson, A. R.; Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A. (1981-04-09). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–465. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID   7219534. S2CID   4355527.
  11. 1 2 Iuchi, S.; Lin, E. C. C. (1993-07-01). "Adaptation of Escherichia coli to redox environments by gene expression". Molecular Microbiology. 9 (1): 9–15. doi:10.1111/j.1365-2958.1993.tb01664.x. ISSN   1365-2958. PMID   8412675. S2CID   39165641.
  12. Tuchman, Mendel; Plante, Robert J. (1995-01-01). "Mutations and polymorphisms in the human ornithine transcarbamylase gene: Mutation update addendum". Human Mutation. 5 (4): 293–295. doi: 10.1002/humu.1380050404 . ISSN   1098-1004. PMID   7627182. S2CID   2951786.
  13. Kirsch, Jack F.; Eichele, Gregor; Ford, Geoffrey C.; Vincent, Michael G.; Jansonius, Johan N.; Gehring, Heinz; Christen, Philipp (1984-04-15). "Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure". Journal of Molecular Biology. 174 (3): 497–525. doi:10.1016/0022-2836(84)90333-4. PMID   6143829.
  14. Denton, Richard M.; Randle, Philip J.; Bridges, Barbara J.; Cooper, Ronald H.; Kerbey, Alan L.; Pask, Helen T.; Severson, David L.; Stansbie, David; Whitehouse, Susan (1975-10-01). "Regulation of mammalian pyruvate dehydrogenase". Molecular and Cellular Biochemistry. 9 (1): 27–53. doi:10.1007/BF01731731. ISSN   0300-8177. PMID   171557. S2CID   27367543.
  15. Fox, Thomas D. (2012-12-01). "Mitochondrial Protein Synthesis, Import, and Assembly". Genetics. 192 (4): 1203–1234. doi:10.1534/genetics.112.141267. ISSN   0016-6731. PMC   3512135 . PMID   23212899.
  16. Grivell, L.A.; Pel, H.J. (1994). "Protein synthesis in mitochondria" (PDF). Mol. Biol. Rep. 19 (3): 183–194. doi:10.1007/bf00986960. PMID   7969106. S2CID   21200502.