Acyl-CoA

Last updated
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain Acyl-CoA2.svg
General chemical structure of an acyl-CoA, where R is a carboxylic acid side chain

Acyl-CoA is a group of CoA-based coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the common biochemical energy carrier.

Contents

Functions

Fatty acid activation

Fats are broken down by conversion to acyl-CoA. This conversion is one response to high energy demands such as exercise. [1] The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase. [2] Fatty acids are converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase"

acyl-P + HS-CoA → acyl-S-CoA + Pi + H+

Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. [3] For example, the substrates for medium chain acyl-CoA synthase are 4-11 carbon fatty acids. [4] The enzyme acyl-CoA thioesterase takes of the acyl-CoA to form a free fatty acid and coenzyme A. [4]

Beta oxidation of acyl-CoA

The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria. [5]   After formation in the cytosol, acyl-CoA is transported into the mitochondria, the location of beta oxidation.  Transport of acyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts acyl-CoA into acylcarnitine, which gets transported into the mitochondrial matrix. [1]   Once in the matrix, acylcarnitine is converted back to acyl-CoA by CPT2. [5]   Beta oxidation may begin now that Acyl-CoA is in the mitochondria.  

Beta oxidation of acyl-CoA occurs in four steps.

1.      Acyl-CoA dehydrogenase catalyzes dehydrogenation of the acyl-CoA, creating a double bond between the alpha and beta carbons. [6]   FAD is the hydrogen acceptor, yielding FADH2. [7]

2.      Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. [5] [6]

3.      3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone. [5] NADH is produced from NAD+. [6]

4.      Thiolase cleaves between the alpha carbon and ketone to release one molecule of Acetyl-CoA and the Acyl-CoA which is now 2 carbons shorter. [6]

This four step process repeats until acyl-CoA has removed all carbons from the chain, leaving only Acetyl-CoA. During one cycle of beta oxidation, Acyl-CoA creates one molecule of Acetyl-CoA, FADH2, and NADH. [7]   Acetyl-CoA is then used in the citric acid cycle while FADH2 and NADH are sent to the electron transport chain. [8] These intermediates all end up providing energy for the body as they are ultimately converted to ATP. [8]

Example of Beta Oxidation using Stearic Acid Beta Oxidation Process.png
Example of Beta Oxidation using Stearic Acid

Beta oxidation, as well as alpha-oxidation, also occurs in the peroxisome. [1] The peroxisome handles beta oxidation of fatty acids that have more than 20 carbons in their chain because the peroxisome contains very-long-chain Acyl-CoA synthetases. [9]   These enzymes are better equipped to oxidize Acyl-CoA with long chains that the mitochondria cannot handle.

Example using stearic acid

Beta oxidation removes 2 carbons at a time, so in the oxidation of an 18 carbon fatty acid such as Stearic Acid 8 cycles will need to occur to completely break down Acyl-CoA. [9] This will produce 9 Acetyl-CoA that have 2 carbons each, 8 FADH2, and 8 NADH.

Clinical significance

Heart muscle primarily metabolizes fat for energy and Acyl-CoA metabolism has been identified [10] as a critical molecule in early stage heart muscle pump failure.

Cellular acyl-CoA content correlates with insulin resistance, suggesting that it can mediate lipotoxicity in non-adipose tissues. [11] Acyl-CoA: diacylglycerol acyltransferase (DGAT) plays an important role in energy metabolism on account of key enzyme in triglyceride biosynthesis. The synthetic role of DGAT in adipose tissue such as the liver and the intestine, sites where endogenous levels of its activity and triglyceride synthesis are high and comparatively clear. Also, any changes in the activity levels might cause changes in systemic insulin sensitivity and energy homeostasis. [12]

A rare disease called multiple acyl-CoA dehydrogenase deficiency (MADD) [13] is a fatty acid metabolism disorder. Acyl-CoA is important because this enzyme helps make Acyl-CoA from free fatty acids, and this activates the fatty acid to be metabolized. This compromised fatty acid oxidation leads to many different symptoms, including severe symptoms such as cardiomyopathy and liver disease and mild symptoms such as episodic metabolic decomposition, muscle weakness and respiratory failure. MADD is a genetic disorder, caused by a mutation in the ETFA, ETFB, and ETFDH genes. MADD is known as an "autosomal recessive disorder" [13] because for one to get this disorder, one must receive this recessive gene from both parents.

See also

Related Research Articles

<span class="mw-page-title-main">Citric acid cycle</span> Interconnected biochemical reactions releasing energy

The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol. The chemical energy released is available in the form of ATP. The Krebs cycle is used by organisms that respire to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism. Even though it is branded as a "cycle", it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Ketogenesis</span> Chemical synthesis of ketone bodies

Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, or others.

<span class="mw-page-title-main">Enoyl CoA isomerase</span> Type of enzyme

Enoyl-CoA-(∆) isomerase (EC 5.3.3.8, also known as dodecenoyl-CoA- isomerase, 3,2-trans-enoyl-CoA isomerase, ∆3 ,∆2 -enoyl-CoA isomerase, or acetylene-allene isomerase, is an enzyme that catalyzes the conversion of cis- or trans-double bonds of coenzyme A bound fatty acids at gamma-carbon to trans double bonds at beta-carbon as below:

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Inborn error of lipid metabolism</span> Medical condition

Numerous genetic disorders are caused by errors in fatty acid metabolism. These disorders may be described as fatty oxidation disorders or as a lipid storage disorders, and are any one of several inborn errors of metabolism that result from enzyme defects affecting the ability of the body to oxidize fatty acids in order to produce energy within muscles, liver, and other cell types.

Acyl-CoA dehydrogenases (ACADs) are a class of enzymes that function to catalyze the initial step in each cycle of fatty acid β-oxidation in the mitochondria of cells. Their action results in the introduction of a trans double-bond between C2 (α) and C3 (β) of the acyl-CoA thioester substrate. Flavin adenine dinucleotide (FAD) is a required co-factor in addition to the presence of an active site glutamate in order for the enzyme to function.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells. In addition to cytosolic fatty acid synthesis, there is also mitochondrial fatty acid synthesis (mtFASII), in which malonyl-CoA is formed from malonic acid with the help of malonyl-CoA synthetase (ACSF3), which then becomes the final product octanoyl-ACP (C8) via further intermediate steps.

Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. It includes three major steps:

<span class="mw-page-title-main">Thiolase</span> Enzymes

Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are enzymes which convert two units of acetyl-CoA to acetoacetyl CoA in the mevalonate pathway.

<span class="mw-page-title-main">ACOT2</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 2, also known as ACOT2, is an enzyme which in humans is encoded by the ACOT2 gene.

<span class="mw-page-title-main">ACOT4</span> Protein-coding gene in the species Homo sapiens

Acyl-coenzyme A thioesterase 4 is an enzyme that in humans is encoded by the ACOT4 gene.

<span class="mw-page-title-main">Fatty-acid metabolism disorder</span> Medical condition

A broad classification for genetic disorders that result from an inability of the body to produce or utilize an enzyme or transport protein that is required to oxidize fatty acids. They are an inborn error of lipid metabolism, and when it affects the muscles also a metabolic myopathy.

<span class="mw-page-title-main">ACOT6</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 6 is a protein that in humans is encoded by the ACOT6 gene. The protein, also known as C14orf42, is an enzyme with thioesterase activity.

Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-AMP linked to phosphorylated pantothenic acid (vitamin B5) and cysteamine.

<span class="mw-page-title-main">ACOT13</span> Protein-coding gene in the species Homo sapiens

Acyl-CoA thioesterase 13 is a protein that in humans is encoded by the ACOT13 gene. This gene encodes a member of the thioesterase superfamily. In humans, the protein co-localizes with microtubules and is essential for sustained cell proliferation.

References

  1. 1 2 3 Talley, Jacob T.; Mohiuddin, Shamim S. (2020), "Biochemistry, Fatty Acid Oxidation", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   32310462 , retrieved 2021-02-23
  2. Grevengoed, Trisha J.; Klett, Eric L.; Coleman, Rosalind A. (2014-07-17). "Acyl-CoA Metabolism and Partitioning". Annual Review of Nutrition. 34 (1): 1–30. doi:10.1146/annurev-nutr-071813-105541. ISSN   0199-9885. PMC   5881898 . PMID   24819326.
  3. Blanco, Antonio; Blanco, Gustavo (2017). "Lipid Metabolism". Medical Biochemistry. pp. 325–365. doi:10.1016/B978-0-12-803550-4.00015-X. ISBN   978-0-12-803550-4.
  4. 1 2 Bhagavan, N.V.; Ha, Chung-Eun (2015). "Lipids I: Fatty Acids and Eicosanoids". Essentials of Medical Biochemistry. pp. 269–297. doi:10.1016/B978-0-12-416687-5.00016-6. ISBN   978-0-12-416687-5.
  5. 1 2 3 4 "Fatty acid beta oxidation | Abcam". www.abcam.com. Retrieved 2021-02-23.
  6. 1 2 3 4 "6.11: Fatty Acid Oxidation". Biology LibreTexts. 2016-02-26. Retrieved 2021-02-23.
  7. 1 2 "Beta Oxidation". Biology Dictionary. 2017-06-03. Retrieved 2021-02-23.
  8. 1 2 "6.32 Fatty Acid Oxidation (Beta-oxidation) | Nutrition Flexbook". courses.lumenlearning.com. Retrieved 2021-02-23.
  9. 1 2 Reddy, Janardan K; Hashimoto, Takashi (2001-07-01). "PEROXISOMAL β-OXIDATION AND PEROXISOME PROLIFERATOR–ACTIVATED RECEPTOR α: An Adaptive Metabolic System". Annual Review of Nutrition. 21 (1): 193–230. doi:10.1146/annurev.nutr.21.1.193. ISSN   0199-9885. PMID   11375435.
  10. Goldenberg, Joseph R.; Carley, Andrew N.; Ji, Ruiping; Zhang, Xiaokan; Fasano, Matt; Schulze, P. Christian; Lewandowski, E. Douglas (26 March 2019). "Preservation of Acyl-CoA Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking". Circulation. 139 (24): 2765–2777. doi:10.1161/CIRCULATIONAHA.119.039610. PMC   6557671 . PMID   30909726.
  11. Li, Lei O.; Klett, Eric L.; Coleman, Rosalind A. (March 2010). "Acyl-CoA synthesis, lipid metabolism and lipotoxicity". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1801 (3): 246–251. doi:10.1016/j.bbalip.2009.09.024. PMC   2824076 . PMID   19818872.
  12. Yu, Yi-Hao; Ginsberg, Henry (8 July 2009). "The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism". Annals of Medicine. 36 (4): 252–261. doi: 10.1080/07853890410028429 . PMID   15224651. S2CID   9174481.
  13. 1 2 Rashmi, S.; Gayathri, N.; Kumar, M. Veerendra; Sumanth, S.; Subasree, R.; Pooja, M. (1 January 2017). "Multiple Acyl CoA dehydrogenase deficiency: Uncommon yet treatable disorder". Neurology India. 65 (1): 177–8. doi: 10.4103/0028-3886.198186 . PMID   28084266.