Pristanic acid

Last updated
Pristanic acid
PristanicAcid.png
Names
IUPAC name
2,6,10,14-tetramethylpentadecanoic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C19H38O2/c1-15(2)9-6-10-16(3)11-7-12-17(4)13-8-14-18(5)19(20)21/h15-18H,6-14H2,1-5H3,(H,20,21) Yes check.svgY
    Key: PAHGJZDQXIOYTH-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C19H38O2/c1-15(2)9-6-10-16(3)11-7-12-17(4)13-8-14-18(5)19(20)21/h15-18H,6-14H2,1-5H3,(H,20,21)
    Key: PAHGJZDQXIOYTH-UHFFFAOYAH
  • O=C(O)C(CCCC(CCCC(C)CCCC(C)C)C)C
Properties
C19H38O2
Molar mass 298.504
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Pristanic acid (2,6,10,14-tetramethylpentadecanoic acid) is a terpenoid acid present at micromolar concentrations in the blood plasma of healthy individuals. It is also found in the lipids from many sources such as freshwater sponges, krill, earthworms, whales, human milk fat, bovine depot fat, butterfat or Californian petroleum. It is usually present in combination with phytanic acid. In humans, pristanic acid is obtained from two sources: either directly from the diet or as the alpha oxidation product of phytanic acid. At physiological concentrations pristanic acid is a natural ligand for peroxisome proliferator-activated receptor alpha (PPARα). In liver, pristanic acid is degraded by peroxisomal beta oxidation to propionyl-CoA. Together with phytanic acid, pristanic acid accumulates in several inherited disorders such as Zellweger syndrome.

The salts and esters of pristanic acid are called pristanates.

Pristanic acid was first isolated from butterfat by R. P. Hansen and J. D. Morrison in 1964. [1] The name of the substance is derived from pristane (2,6,10,14-tetramethylpentadecane), the corresponding hydrocarbon. Pristane was isolated from shark liver and was named after Latin pristis, "shark".

See also

Related Research Articles

α-Linolenic acid Chemical compound

α-Linolenic acid, also known as alpha-linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

<span class="mw-page-title-main">Lactic acid</span> Organic acid

Lactic acid is an organic acid. It has the molecular formula CH3CH(OH)COOH. It is white in the solid state and it is miscible with water. When in the dissolved state, it forms a colorless solution. Production includes both artificial synthesis as well as natural sources. Lactic acid is an alpha-hydroxy acid (AHA) due to the presence of a hydroxyl group adjacent to the carboxyl group. It is used as a synthetic intermediate in many organic synthesis industries and in various biochemical industries. The conjugate base of lactic acid is called lactate. The name of the derived acyl group is lactoyl.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Stearic acid</span> Eighteen-carbon straight-chain fatty acid

Stearic acid is a saturated fatty acid with an 18-carbon chain. The IUPAC name is octadecanoic acid. It is a soft waxy solid with the formula CH3(CH2)16CO2H. The triglyceride derived from three molecules of stearic acid is called stearin. Stearic acid is a prevalent fatty-acid in nature, found in many animal and vegetable fats, but is usually higher in animal fat than vegetable fat. It has a melting point of 69.4 °C (156.9 °F) °C and a pKa of 4.50.

<span class="mw-page-title-main">Zellweger syndrome</span> Congenital disorder of nervous system

Zellweger syndrome is a rare congenital disorder characterized by the reduction or absence of functional peroxisomes in the cells of an individual. It is one of a family of disorders called Zellweger spectrum disorders which are leukodystrophies. Zellweger syndrome is named after Hans Zellweger (1909–1990), a Swiss-American pediatrician, a professor of pediatrics and genetics at the University of Iowa who researched this disorder.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

<span class="mw-page-title-main">Bile acid</span> Steroid acid found predominantly in the bile of mammals and other vertebrates

Bile acids are steroid acids found predominantly in the bile of mammals and other vertebrates. Diverse bile acids are synthesized in the liver. Bile acids are conjugated with taurine or glycine residues to give anions called bile salts.

<span class="mw-page-title-main">Palmitoleic acid</span> Chemical compound

Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH. It is a rare component of fats. It is a common constituent of the glycerides of human adipose tissue. It is present in all tissues but, in general, found in higher concentrations in the liver.

Phytol is an acyclic hydrogenated diterpene alcohol that is used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1, as well as in the fragrance industry. Its other commercial uses include cosmetics, shampoos, toilet soaps, and detergents, as well as in some cannabis distillates as a diluent or for flavoring. Its worldwide use has been estimated to be approximately 0.1–1.0 metric tons per year.

Pristane is a natural saturated terpenoid alkane obtained primarily from shark liver oil, from which its name is derived. It is also found in the stomach oil of birds in the order Procellariiformes and in mineral oil and some foods. Pristane and phytane are used in the fields of geology and environmental science as biomarkers to characterize origins and evolution of petroleum hydrocarbons and coal.

Refsum disease is an autosomal recessive neurological disease that results in the over-accumulation of phytanic acid in cells and tissues. It is one of several disorders named after Norwegian neurologist Sigvald Bernhard Refsum (1907–1991). Refsum disease typically is adolescent onset and is diagnosed by above average levels of phytanic acid. Humans obtain the necessary phytanic acid primarily through diet. It is still unclear what function phytanic acid plays physiologically in humans, but has been found to regulate fatty acid metabolism in the liver of mice.

Phytanic acid is a branched chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. Western diets are estimated to provide 50–100 mg of phytanic acid per day. In a study conducted in Oxford, individuals who consumed meat had, on average, a 6.7-fold higher geometric mean plasma phytanic acid concentration than did vegans.

<span class="mw-page-title-main">Ursolic acid</span> Pentacyclic chemical compound found in fruits

Ursolic acid, is a pentacyclic triterpenoid identified in the epicuticular waxes of apples as early as 1920 and widely found in the peels of fruits, as well as in herbs and spices like rosemary and thyme.

<span class="mw-page-title-main">HADHA</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit alpha, mitochondrial also known as hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit is a protein that in humans is encoded by the HADHA gene. Mutations in HADHA have been associated with trifunctional protein deficiency or long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

Infantile Refsum disease (IRD) is a rare autosomal recessive congenital peroxisomal biogenesis disorder within the Zellweger spectrum. These are disorders of the peroxisomes that are clinically similar to Zellweger syndrome and associated with mutations in the PEX family of genes. IRD is associated with deficient phytanic acid catabolism, as is adult Refsum disease, but they are different disorders that should not be confused.

<span class="mw-page-title-main">Phytanoyl-CoA dioxygenase</span> Class of enzymes

In enzymology, a phytanoyl-CoA dioxygenase (EC 1.14.11.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor alpha</span> Nuclear receptor protein found in humans

Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1, is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the PPARA gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes.

<span class="mw-page-title-main">Alpha-methylacyl-CoA racemase</span> Protein-coding gene in the species Homo sapiens

α-Methylacyl-CoA racemase is an enzyme that in humans is encoded by the AMACR gene. AMACR catalyzes the following chemical reaction:

<span class="mw-page-title-main">Alpha oxidation</span>

Alpha oxidation (α-oxidation) is a process by which certain branched-chain fatty acids are broken down by removal of a single carbon from the carboxyl end. In humans, alpha-oxidation is used in peroxisomes to break down dietary phytanic acid, which cannot undergo beta-oxidation due to its β-methyl branch, into pristanic acid. Pristanic acid can then acquire acetyl-CoA and subsequently become beta oxidized, yielding propionyl-CoA.

Pentadecylic acid, also known as pentadecanoic acid or C15:0, is an odd-chain saturated fatty acid. Its molecular formula is CH3(CH2)13CO2H. It is a colorless solid.

References

  1. R. P. Hansen, J. D. Morrison, The isolation and identification of 2,6,10,14-tetramethylpentadecanoic acid from butterfat, Biochemical Journal 1964 Nov;93(2):225-8.