MT-ND5

Last updated
ND5
Identifiers
Aliases ND5 , mitochondrially encoded NADH dehydrogenase 5, MTNADH dehydrogenase, subunit 5 (complex I), NADH dehydrogenase subunit 5
External IDs OMIM: 516005 MGI: 102496 HomoloGene: 36212 GeneCards: ND5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

NP_904338

Location (UCSC) Chr M: 0.01 – 0.01 Mb Chr M: 0.01 – 0.01 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Location of the MT-ND5 gene in the human mitochondrial genome. MT-ND5 is one of the seven NADH dehydrogenase mitochondrial genes (yellow boxes). Map of the human mitochondrial genome.svg
Location of the MT-ND5 gene in the human mitochondrial genome. MT-ND5 is one of the seven NADH dehydrogenase mitochondrial genes (yellow boxes).

MT-ND5 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 5 protein (ND5). [5] The ND5 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. [6] Variations in human MT-ND5 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) as well as some symptoms of Leigh's syndrome and Leber's hereditary optic neuropathy (LHON). [7] [8]

Contents

Structure

MT-ND5 is located in mitochondrial DNA from base pair 12,337 to 14,148. [5] The MT-ND5 gene produces a 67 kDa protein composed of 603 amino acids. [9] [10] MT-ND5 is one of seven mitochondrial genes encoding subunits of the enzyme NADH dehydrogenase (ubiquinone), together with MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, and MT-ND6. Also known as Complex I, this enzyme is the largest of the respiratory complexes. The structure is L-shaped with a long, hydrophobic transmembrane domain and a hydrophilic domain for the peripheral arm that includes all the known redox centres and the NADH binding site. MT-ND5 and the rest of the mitochondrially encoded subunits are the most hydrophobic of the subunits of Complex I and form the core of the transmembrane region. [6]

Function

The MT-ND5 product is a subunit of the respiratory chain Complex I that is supposed to belong to the minimal assembly of core proteins required to catalyze NADH dehydrogenation and electron transfer to ubiquinone (coenzyme Q10). [11] Initially, NADH binds to Complex I and transfers two electrons to the isoalloxazine ring of the flavin mononucleotide (FMN) prosthetic arm to form FMNH2. The electrons are transferred through a series of iron-sulfur (Fe-S) clusters in the prosthetic arm and finally to coenzyme Q10 (CoQ), which is reduced to ubiquinol (CoQH2). The flow of electrons changes the redox state of the protein, resulting in a conformational change and pK shift of the ionizable side chain, which pumps four hydrogen ions out of the mitochondrial matrix. [6]

Clinical Significance

A small percentage of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) are caused by a G>A mutation at base pair 13513 in the MT-ND5 gene. Mutations in the MT-ND5 gene cause impaired Complex I function of the mitochondrial electron transport system, impairing those tissues that require significant energy input, such as the brain and muscles. Cardiac and renal involvement as well as symptoms such as myopathy and lactic acidosis can also be observed. [12] Those with MT-ND5 mutations can display the major features of MELAS and MERRF in some patients, as well as symptoms of Leigh's syndrome and/or Leber's hereditary optic neuropathy (LHON) in others. [7] [8] [13] [14]

Interactions

MT-ND5 interacts with Glutamine synthetase (GLUL), LIG4 and YME1L1. [5]

Related Research Articles

MT-ND6 Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND6 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 6 protein (ND6). The ND6 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the human MT-ND6 gene are associated with Leigh's syndrome, Leber's hereditary optic neuropathy (LHON) and dystonia.

MT-ND4 Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND4 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 4 (ND4) protein. The ND4 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in the MT-ND4 gene are associated with age-related macular degeneration (AMD), Leber's hereditary optic neuropathy (LHON), mesial temporal lobe epilepsy (MTLE) and cystic fibrosis.

MT-ND2 Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND2 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 2 (ND2) protein. The ND2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of human MT-ND2 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS), Leber's hereditary optic neuropathy (LHON) and increases in adult BMI.

MT-ND4L Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND4L is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 4L (ND4L) protein. The ND4L protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of human MT-ND4L are associated with increased BMI in adults and Leber's Hereditary Optic Neuropathy (LHON).

MT-ND3 Mitochondrial protein-coding gene whose product is involved in the respiratory chain

MT-ND3 is a gene of the mitochondrial genome coding for the NADH dehydrogenase 3 (ND3) protein. The ND3 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of MT-ND3 are associated with Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS) and Leber's hereditary optic neuropathy (LHON).

MT-ND1 Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND1 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 1 (ND1) protein. The ND1 protein is a subunit of NADH dehydrogenase, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variants of the human MT-ND1 gene are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), Leigh's syndrome (LS), Leber's hereditary optic neuropathy (LHON) and increases in adult BMI.

NDUFS8

NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial also known as NADH-ubiquinone oxidoreductase 23 kDa subunit, Complex I-23kD (CI-23kD), or TYKY subunit is an enzyme that in humans is encoded by the NDUFS8 gene. The NDUFS8 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated with Leigh syndrome.

NADH dehydrogenase (ubiquinone), alpha 1

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1 is a protein that in humans is encoded by the NDUFA1 gene. The NDUFA1 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in the NDUFA1 gene are associated with mitochondrial Complex I deficiency.

NDUFS7

NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial, also knowns as NADH-ubiquinone oxidoreductase 20 kDa subunit, Complex I-20kD (CI-20kD), or PSST subunit is an enzyme that in humans is encoded by the NDUFS7 gene. The NDUFS7 protein is a subunit of NADH dehydrogenase (ubiquinone) also known as Complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

NDUFB6

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6, also known as complex I-B17, is a protein that in humans is encoded by the NDUFB6 gene. NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 6, is an accessory subunit of the NADH dehydrogenase (ubiquinone) complex, located in the mitochondrial inner membrane. It is also known as Complex I and is the largest of the five complexes of the electron transport chain.

NDUFA2

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 is a protein that in humans is encoded by the NDUFA2 gene. The NDUFA2 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in the NDUFA2 gene are associated with Leigh's syndrome.

NDUFA9

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 is an enzyme that in humans is encoded by the NDUFA9 gene. The NDUFA9 protein is a subunit of NADH:ubiquinone oxidoreductase, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome. In the case of NDUFA9, a mutation to the MT-ND3 gene might interrupt their interaction and formation of subcomplexes, compromising Complex I function and leading to disease.

FOXRED1

FAD-dependent oxidoreductase domain-containing protein 1 (FOXRED1), also known as H17, or FP634 is an enzyme that in humans is encoded by the FOXRED1 gene. FOXRED1 is an oxidoreductase and complex I-specific molecular chaperone involved in the assembly and stabilization of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in FOXRED1 have been associated with Leigh syndrome and infantile-onset mitochondrial encephalopathy.

NDUFA8

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8 is an enzyme that in humans is encoded by the NDUFA8 gene. The NDUFA8 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

NDUFA12

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 is an enzyme that in humans is encoded by the NDUFA12 gene. The NDUFA12 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in subunits of NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome that result from mitochondrial complex I deficiency.

NDUFAF3

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 3, also known as 2P1, E3-3, or C3orf60, is a protein that in humans is encoded by the NDUFAF3 gene. NDUFAF3 is a mitochondrial assembly protein involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated severe complex I deficiency and Leigh syndrome.

NDUFA10

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 is an enzyme that in humans is encoded by the NDUFA10 gene. The NDUFA10 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in subunits of NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome. Furthermore, reduced NDUFA10 expression levels due to FOXM1-directed hypermethylation are associated with human squamous cell carcinoma and may be related to other forms of cancer.

NDUFB11

NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial is an enzyme that in humans is encoded by the NDUFB11 gene. NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 11 is an accessory subunit of the NADH dehydrogenase (ubiquinone) complex, located in the mitochondrial inner membrane. It is also known as Complex I and is the largest of the five complexes of the electron transport chain. NDUFB11 mutations have been associated with linear skin defects with multiple congenital anomalies 3 and mitochondrial complex I deficiency.

NDUFA11

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 is an enzyme that in humans is encoded by the NDUFA11 gene. The NDUFA11 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain Mutations in subunits of NADH dehydrogenase (ubiquinone), also known as Complex I, frequently lead to complex neurodegenerative diseases such as Leigh's syndrome. Mutations in this gene are associated with severe mitochondrial complex I deficiency.

NDUFAF4

NADH:ubiquinone oxidoreductase complex assembly factor 4, (NDUFAF4) also known as Hormone-regulated proliferation-associated protein of 20 kDa, (HRPAP20) or C6orf66 is a protein that in humans is encoded by the NDUFAF4 gene. NDUFAF4 is a mitochondrial assembly protein involved in the assembly of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in this gene have been associated with complex I deficiency and infantile mitochondrial encephalomyopathy. Elevations in HRPAP20 have also been implicated in breast cancer.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198786 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000064367 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 "Entrez Gene: MT-ND5 NADH dehydrogenase subunit 5".
  6. 1 2 3 Voet D, Voet JG, Pratt CW (2013). "18". Fundamentals of biochemistry : life at the molecular level (4th ed.). Hoboken, NJ: Wiley. pp. 581–620. ISBN   978-0-470-54784-7.
  7. 1 2 El-Hattab, A. W.; Almannai, M.; Scaglia, F.; Adam, M. P.; Ardinger, H. H.; Pagon, R. A.; Wallace, S. E.; Bean LJH; Stephens, K.; Amemiya, A. (1993). "MELAS". GeneReviews. PMID   20301411.
  8. 1 2 "MT-ND5". Genetics Home Reference. US National Library of Medicine. Retrieved 23 March 2015.
  9. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  10. "NADH-ubiquinone oxidoreductase chain 5". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB).
  11. "MT-ND5 - NADH-ubiquinone oxidoreductase chain 5 - Homo sapiens (Human)". UniProt.org: a hub for protein information. The UniProt Consortium.
  12. Alston CL, Morak M, Reid C, Hargreaves IP, Pope SA, Land JM, Heales SJ, Horvath R, Mundy H, Taylor RW (February 2010). "A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy". Neuromuscular Disorders. 20 (2): 131–5. doi:10.1016/j.nmd.2009.10.010. PMID   20018511. S2CID   13122341.
  13. Taylor RW, Morris AA, Hutchinson M, Turnbull DM (February 2002). "Leigh disease associated with a novel mitochondrial DNA ND5 mutation". European Journal of Human Genetics. 10 (2): 141–4. doi: 10.1038/sj.ejhg.5200773 . PMID   11938446.
  14. Naini AB, Lu J, Kaufmann P, Bernstein RA, Mancuso M, Bonilla E, Hirano M, DiMauro S (March 2005). "Novel mitochondrial DNA ND5 mutation in a patient with clinical features of MELAS and MERRF". Archives of Neurology. 62 (3): 473–6. doi: 10.1001/archneur.62.3.473 . PMID   15767514.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.