MT-TR

Last updated
mitochondrially encoded tRNA arginine
Identifiers
SymbolMT-TR
Alt. symbolsMTTR
NCBI gene 4573
HGNC 7496
RefSeq NC_001807
Other data
Locus Chr. MT

Mitochondrially encoded tRNA arginine also known as MT-TR is a transfer RNA which in humans is encoded by the mitochondrial MT-TR gene. [1]

Contents

Structure

The MT-TR gene is located on the p arm of the non-nuclear mitochondrial DNA at position 12 and it spans 65 base pairs. [2] The structure of a tRNA molecule is a distinctive folded structure which contains three hairpin loops and resembles a three-leafed clover. [3]

Function

MT-TR is a small 65 nucleotide RNA (human mitochondrial map position 10405-10469) that transfers the amino acid arginine to a growing polypeptide chain at the ribosome site of protein synthesis during translation.

Clinical significance

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS)

Mutations in MT-TR have been associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). MELAS is a rare mitochondrial disorder known to affect many parts of the body, especially the nervous system and the brain. Symptoms of MELAS include recurrent severe headaches, muscle weakness (myopathy), hearing loss, stroke-like episodes with a loss of consciousness, seizures, and other problems affecting the nervous system. [4] Mutations in MT-TR associated with the disease have included 10450A-G [5] and 10438A-G. [6]

Cytochrome c oxidase deficiency

MT-TR mutations have been associated with complex IV deficiency of the mitochondrial respiratory chain, also known as the cytochrome c oxidase deficiency. Cytochrome c oxidase deficiency is a rare genetic condition that can affect multiple parts of the body, including skeletal muscles, the heart, the brain, or the liver. Common clinical manifestations include myopathy, hypotonia, and encephalomyopathy, lactic acidosis, and hypertrophic cardiomyopathy. [7] A 10437 G>A mutation has been found with a patient with the deficiency. [8]

Related Research Articles

MELAS syndrome Medical condition

Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is one of the family of mitochondrial diseases, which also include MERRF syndrome, and Leber's hereditary optic neuropathy. It was first characterized under this name in 1984. A feature of these diseases is that they are caused by defects in the mitochondrial genome which is inherited purely from the female parent.

MT-RNR1

Mitochondrially encoded 12S ribosomal RNA, also known as Mitochondrial-derived peptide MOTS-c or Mitochondrial open reading frame of the 12S rRNA-c is the SSU rRNA of the mitochondrial ribosome. In humans, 12S is encoded by the MT-RNR1 gene and is 959 nucleotides long. MT-RNR1 is one of the 37 genes contained in animal mitochondria genomes. Their 2 rRNA, 22 tRNA and 13 mRNA genes are very useful in phylogenetic studies, in particular the 12S and 16S rRNAs. The 12S rRNA is the mitochondrial homologue of the prokaryotic 16S and eukaryotic nuclear 18S ribosomal RNAs. Mutations in the MT-RNR1 gene may be associated with hearing loss.

Mitochondrially encoded tRNA leucine 1 (UUA/G) also known as MT-TL1 is a transfer RNA which in humans is encoded by the mitochondrial MT-TL1 gene.

Mitochondrially encoded tRNA histidine, also known as MT-TH, is a transfer RNA which, in humans, is encoded by the mitochondrial MT-TH gene.

MT-ND5 Mitochondrial gene coding for a protein involved in the respiratory chain

MT-ND5 is a gene of the mitochondrial genome coding for the NADH-ubiquinone oxidoreductase chain 5 protein (ND5). The ND5 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Variations in human MT-ND5 are associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) as well as some symptoms of Leigh's syndrome and Leber's hereditary optic neuropathy (LHON).

Cytochrome c oxidase subunit II Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase subunit 2, also known as cytochrome c oxidase polypeptide II, is a protein that in humans is encoded by the MT-CO2 gene. Cytochrome c oxidase subunit II, abbreviated COXII, COX2, COII, or MT-CO2, is the second subunit of cytochrome c oxidase. It is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV.

Cytochrome c oxidase subunit III Enzyme of the respiratory chain encoded by the mitochondrial genome

Cytochrome c oxidase subunit III (COX3) is an enzyme that in humans is encoded by the MT-CO3 gene. It is one of main transmembrane subunits of cytochrome c oxidase. Cytochrome c oxidase subunit III is also one of the three mitochondrial DNA (mtDNA) encoded subunits of respiratory complex IV. Variants of MT-CO3 have been associated with isolated myopathy, severe encephalomyopathy, Leber hereditary optic neuropathy, mitochondrial complex IV deficiency, and recurrent myoglobinuria.

COX6B1

Cytochrome c oxidase subunit 6B1 is an enzyme that in humans is encoded by the COX6B1 gene. Cytochrome c oxidase 6B1 is a subunit of the cytochrome c oxidase complex, also known as Complex IV, the last enzyme in the mitochondrial electron transport chain. Mutations of the COX6B1 gene are associated with severe infantile encephalomyopathy and mitochondrial complex IV deficiency (MT-C4D).

Mitochondrially encoded tRNA valine also known as MT-TV is a transfer RNA which in humans is encoded by the mitochondrial MT-TV gene.

Mitochondrially encoded tRNA aspartic acid also known as MT-TD is a transfer RNA which in humans is encoded by the mitochondrial MT-TD gene.

Mitochondrially encoded tRNA glutamic acid also known as MT-TE is a transfer RNA which in humans is encoded by the mitochondrial MT-TE gene. MT-TE is a small 69 nucleotide RNA that transfers the amino acid glutamic acid to a growing polypeptide chain at the ribosome site of protein synthesis during translation.

Mitochondrially encoded tRNA phenylalanine also known as MT-TF is a transfer RNA which in humans is encoded by the mitochondrial MT-TF gene.

Mitochondrially encoded tRNA isoleucine also known as MT-TI is a transfer RNA which in humans is encoded by the mitochondrial MT-TI gene.

Mitochondrially encoded tRNA lysine also known as MT-TK is a transfer RNA which in humans is encoded by the mitochondrial MT-TK gene.

Mitochondrially encoded tRNA leucine 2 (CUN) also known as MT-TL2 is a transfer RNA which in humans is encoded by the mitochondrial MT-TL2 gene.

Mitochondrially encoded tRNA asparagine also known as MT-TN is a transfer RNA which in humans is encoded by the mitochondrial MT-TN gene.

Mitochondrially encoded tRNA threonine also known as MT-TT is a transfer RNA which in humans is encoded by the mitochondrial MT-TT gene.

Mitochondrially encoded tRNA tryptophan also known as MT-TW is a transfer RNA which in humans is encoded by the mitochondrial MT-TW gene.

Mitochondrially encoded tRNA tyrosine also known as MT-TY is a transfer RNA which in humans is encoded by the mitochondrial MT-TY gene.

PET100

PET100 homolog is a protein that in humans is encoded by the PET100 gene. Mitochondrial complex IV, or cytochrome c oxidase, is a large transmembrane protein complex that is part of the respiratory electron transport chain of mitochondria. The small protein encoded by the PET100 gene plays a role in the biogenesis of mitochondrial complex IV. This protein localizes to the inner mitochondrial membrane and is exposed to the intermembrane space. Mutations in this gene are associated with mitochondrial complex IV deficiency. This gene has a pseudogene on chromosome 3. Alternative splicing results in multiple transcript variants.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (April 1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–65. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID   7219534. S2CID   4355527.
  2. "MT-TR mitochondrially encoded tRNA arginine [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov.
  3. "tRNA / transfer RNA". Learn Science at Scitable.
  4. Reference, Genetics Home. "MT-TH gene". Genetics Home Reference.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  5. Smits P, Mattijssen S, Morava E, van den Brand M, van den Brandt F, Wijburg F, Pruijn G, Smeitink J, Nijtmans L, Rodenburg R, van den Heuvel L (March 2010). "Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects". European Journal of Human Genetics. 18 (3): 324–9. doi:10.1038/ejhg.2009.169. PMC   2987211 . PMID   19809478.
  6. Uusimaa J, Finnilä S, Remes AM, Rantala H, Vainionpää L, Hassinen IE, Majamaa K (August 2004). "Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes". Pediatrics. 114 (2): 443–50. doi:10.1542/peds.114.2.443. PMID   15286228.
  7. Reference, Genetics Home. "Cytochrome c oxidase deficiency". Genetics Home Reference.PD-icon.svgThis article incorporates text from this source, which is in the public domain .
  8. Roos S, Darin N, Kollberg G, Andersson Grönlund M, Tulinius M, Holme E, Moslemi AR, Oldfors A (May 2013). "A novel mitochondrial tRNA Arg mutation resulting in an anticodon swap in a patient with mitochondrial encephalomyopathy". European Journal of Human Genetics. 21 (5): 571–3. doi:10.1038/ejhg.2012.153. PMC   3641373 . PMID   22781096.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.