Biological rules

Last updated
The pygmy mammoth is an example of insular dwarfism, a case of Foster's rule, its unusually small body size an adaptation to the limited resources of its island home. M. exilis skeletal.png
The pygmy mammoth is an example of insular dwarfism, a case of Foster's rule, its unusually small body size an adaptation to the limited resources of its island home.

A biological rule or biological law is a generalized law, principle, or rule of thumb formulated to describe patterns observed in living organisms. Biological rules and laws are often developed as succinct, broadly applicable ways to explain complex phenomena or salient observations about the ecology and biogeographical distributions of plant and animal species around the world, though they have been proposed for or extended to all types of organisms. Many of these regularities of ecology and biogeography are named after the biologists who first described them. [1] [2]

Contents

From the birth of their science, biologists have sought to explain apparent regularities in observational data. In his biology, Aristotle inferred rules governing differences between live-bearing tetrapods (in modern terms, terrestrial placental mammals). Among his rules were that brood size decreases with adult body mass, while lifespan increases with gestation period and with body mass, and fecundity decreases with lifespan. Thus, for example, elephants have smaller and fewer broods than mice, but longer lifespan and gestation. [3] Rules like these concisely organized the sum of knowledge obtained by early scientific measurements of the natural world, and could be used as models to predict future observations. Among the earliest biological rules in modern times are those of Karl Ernst von Baer (from 1828 onwards) on embryonic development (see von Baer's laws), [4] and of Constantin Wilhelm Lambert Gloger on animal pigmentation, in 1833 (see Gloger's rule). [5] There is some scepticism among biogeographers about the usefulness of general rules. For example, J.C. Briggs, in his 1987 book Biogeography and Plate Tectonics, comments that while Willi Hennig's rules on cladistics "have generally been helpful", his progression rule is "suspect". [6]

List of biological rules

Bergmann's rule states that body mass increases with colder climate, as here in Swedish moose. Bergmann's Rule.svg
Bergmann's rule states that body mass increases with colder climate, as here in Swedish moose.
Dollo's law of irreversibility asserts that once an organism has evolved in a certain way, it will not return exactly to a previous form. Dollo's law of irreversibility.svg
Dollo's law of irreversibility asserts that once an organism has evolved in a certain way, it will not return exactly to a previous form.

See also

Related Research Articles

<span class="mw-page-title-main">Parasitism</span> Relationship between species where one organism lives on or in another organism, causing it harm

Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

<span class="mw-page-title-main">Bergmann's rule</span> Biological rule stating that larger size organisms are found in colder environments

Bergmann's rule is an ecogeographical rule that states that, within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, while populations and species of smaller size are found in warmer regions. The rule derives from the relationship between size in linear dimensions meaning that both height and volume will increase in colder environments. Bergmann's rule only describes the overall size of the animals, but does not include body proportions like Allen's rule does.

<span class="mw-page-title-main">Dollo's law of irreversibility</span> Hypothesis by Louis Dollo in 1893, which states evolution is not exactly reversible

Dollo's law of irreversibility, proposed in 1893 by Belgian paleontologist Louis Dollo states that, "an organism never returns exactly to a former state, even if it finds itself placed in conditions of existence identical to those in which it has previously lived ... it always keeps some trace of the intermediate stages through which it has passed."

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

<span class="mw-page-title-main">Cope's rule</span>

Cope's rule, named after American paleontologist Edward Drinker Cope, postulates that population lineages tend to increase in body size over evolutionary time. It was never actually stated by Cope, although he favoured the occurrence of linear evolutionary trends. It is sometimes also known as the Cope–Depéret rule, because Charles Depéret explicitly advocated the idea. Theodor Eimer had also done so earlier. The term "Cope's rule" was apparently coined by Bernhard Rensch, based on the fact that Depéret had "lionized Cope" in his book. While the rule has been demonstrated in many instances, it does not hold true at all taxonomic levels, or in all clades. Larger body size is associated with increased fitness for a number of reasons, although there are also some disadvantages both on an individual and on a clade level: clades comprising larger individuals are more prone to extinction, which may act to limit the maximum size of organisms.

<span class="mw-page-title-main">Foster's rule</span> Ecogeographical rule in evolutionary biology

Foster's rule, also known as the island rule or the island effect, is an ecogeographical rule in evolutionary biology stating that members of a species get smaller or bigger depending on the resources available in the environment. For example, it is known that pygmy mammoths evolved from normal mammoths on small islands. Similar evolutionary paths have been observed in elephants, hippopotamuses, boas, sloths, deer and humans. It is part of the more general phenomenon of island syndrome which describes the differences in morphology, ecology, physiology and behaviour of insular species compared to their continental counterparts.

<span class="mw-page-title-main">Kleiber's law</span> Approximate power law relating animal metabolic rate to mass

Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, is the observation that, for the vast majority of animals, an animal's metabolic rate scales to the 34 power of the animal's mass. More recently, Kleiber's law has also been shown to apply in plants, suggesting that Kleiber's observation is much more general. Symbolically: if B is the animal's metabolic rate, and M is the animal's mass, then Kleiber's law states that . Thus, over the same time span, a cat having a mass 100 times that of a mouse will consume only about 32 times the energy the mouse uses.

<span class="mw-page-title-main">Allometry</span> Study of the relationship of body size to shape, anatomy, physiology, and behavior

Allometry is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

<span class="mw-page-title-main">Bernhard Rensch</span> German evolutionary biologist and ornithologist (1900–1990)

Bernhard Rensch was a German evolutionary biologist and ornithologist who did field work in Indonesia and India. Starting his scientific career with pro-Lamarckian views, he shifted to selectionism and became one of the architects of the modern synthesis in evolutionary biology, which he popularised in Germany. Besides his work on how environmental factors influenced the evolution of geographically isolated populations and on evolution above the species level, which contributed to the modern synthesis, he also worked extensively in the area of animal behavior (ethology) and on philosophical aspects of biological science. His education and scientific work were interrupted by service in the German military during both World War I and World War II.

<span class="mw-page-title-main">Island gigantism</span> Evolutionary phenomena leading to an increase of the size of species with insularity

Island gigantism, or insular gigantism, is a biological phenomenon in which the size of an animal species isolated on an island increases dramatically in comparison to its mainland relatives. Island gigantism is one aspect of the more general "island effect" or "Foster's rule", which posits that when mainland animals colonize islands, small species tend to evolve larger bodies, and large species tend to evolve smaller bodies. This is itself one aspect of the more general phenomenon of island syndrome which describes the differences in morphology, ecology, physiology and behaviour of insular species compared to their continental counterparts. Following the arrival of humans and associated introduced predators, many giant as well as other island endemics have become extinct. A similar size increase, as well as increased woodiness, has been observed in some insular plants such as the Mapou tree in Mauritius which is also known as the "Mauritian baobab" although it is member of the grape family (Vitaceae).

Climatic adaptation refers to adaptations of an organism that are triggered due to the patterns of variation of abiotic factors that determine a specific climate. Annual means, seasonal variation and daily patterns of abiotic factors are properties of a climate where organisms can be adapted to. Changes in behavior, physical structure, internal mechanisms and metabolism are forms of adaptation that is caused by climate properties. Organisms of the same species that occur in different climates can be compared to determine which adaptations are due to climate and which are influenced majorly by other factors. Climatic adaptations limits to adaptations that have been established, characterizing species that live within the specific climate. It is different from climate change adaptations which refers to the ability to adapt to gradual changes of a climate. Once a climate has changed, the climate change adaptation that led to the survival of the specific organisms as a species can be seen as a climatic adaptation. Climatic adaptation is constrained by the genetic variability of the species in question.

<span class="mw-page-title-main">Evolutionary physiology</span> Study of evolutionary changes in physiological characteristics

Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of organisms have responded to natural selection or sexual selection or changed by random genetic drift across multiple generations during the history of a population or species. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.

The evolution of biological complexity is one important outcome of the process of evolution. Evolution has produced some remarkably complex organisms – although the actual level of complexity is very hard to define or measure accurately in biology, with properties such as gene content, the number of cell types or morphology all proposed as possible metrics.

Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to help them identify high-quality habitat. If either the habitat quality or the cue changes so that one does not reliably indicate the other, organisms may be lured into poor-quality habitat.

<span class="mw-page-title-main">Ecological fitting</span> Biological process

Ecological fitting is "the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition". It can be understood as a situation in which a species' interactions with its biotic and abiotic environment seem to indicate a history of coevolution, when in actuality the relevant traits evolved in response to a different set of biotic and abiotic conditions.

Ecoimmunology or Ecological Immunology is the study of the causes and consequences of variation in immunity. The field of ecoimmunology seeks to give an ultimate perspective for proximate mechanisms of immunology. This approach places immunology in evolutionary and ecological contexts across all levels of biological organization.

<span class="mw-page-title-main">Evolving digital ecological network</span>

Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs that experience the same major ecological interactions as biological organisms. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology.

<span class="mw-page-title-main">Harrison's rule</span>

Harrison's rule is an observation in evolutionary biology by Launcelot Harrison which states that in comparisons across closely related species, host and parasite body sizes tend to covary positively.

In evolutionary biology, mimicry in vertebrates is mimicry by a vertebrate of some model, deceiving some other animal, the dupe. Mimicry differs from camouflage as it is meant to be seen, while animals use camouflage to remain hidden. Visual, olfactory, auditory, biochemical, and behavioral modalities of mimicry have been documented in vertebrates.

The temperature-size rule denotes the plastic response of organismal body size to environmental temperature variation. Organisms exhibiting a plastic response are capable of allowing their body size to fluctuate with environmental temperature. First coined by David Atkinson in 1996, it is considered to be a unique case of Bergmann's rule that has been observed in plants, animals, birds, and a wide variety of ectotherms. Although exceptions to the temperature-size rule exist, recognition of this widespread "rule" has amassed efforts to understand the physiological mechanisms underlying growth and body size variation in differing environmental temperatures.

References

  1. Jørgensen, Sven Erik (2002). "Explanation of ecological rules and observation by application of ecosystem theory and ecological models". Ecological Modelling. 158 (3): 241–248. Bibcode:2002EcMod.158..241J. doi:10.1016/S0304-3800(02)00236-3.
  2. Allee, W.C.; Schmidt, K.P. (1951). Ecological Animal Geography (2nd ed.). Joh Wiley & sons. pp.  457, 460–472.
  3. Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. p. 408. ISBN   978-1-4088-3622-4.
  4. 1 2 Lovtrup, Soren (1978). "On von Baerian and Haeckelian Recapitulation". Systematic Zoology. 27 (3): 348–352. doi:10.2307/2412887. JSTOR   2412887.
  5. 1 2 Gloger, Constantin Wilhelm Lambert (1833). "5. Abänderungsweise der einzelnen, einer Veränderung durch das Klima unterworfenen Farben". Das Abändern der Vögel durch Einfluss des Klimas [The Evolution of Birds Through the Impact of Climate] (in German). Breslau: August Schulz. pp. 11–24. ISBN   978-3-8364-2744-9. OCLC   166097356.
  6. 1 2 Briggs, J.C. (1987). Biogeography and Plate Tectonics. Elsevier. p. 11. ISBN   978-0-08-086851-6.
  7. Sand, Håkan K.; Cederlund, Göran R.; Danell, Kjell (June 1995). "Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces)". Oecologia . 102 (4): 433–442. Bibcode:1995Oecol.102..433S. doi:10.1007/BF00341355. PMID   28306886. S2CID   5937734.
  8. Allen, Joel Asaph (1877). "The influence of Physical conditions in the genesis of species". Radical Review. 1: 108–140.
  9. Lopez, Barry Holstun (1986). Arctic Dreams: Imagination and Desire in a Northern Landscape. Scribner. ISBN   978-0-684-18578-1.
  10. Held, Lewis I.; Sessions, Stanley K. (2019). "Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror-symmetric". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 332 (7): 219–237. Bibcode:2019JEZB..332..219H. doi:10.1002/jez.b.22910. ISSN   1552-5007. PMID   31613418. S2CID   204704335.
  11. Olalla-Tárraga, Miguel Á.; Rodríguez, Miguel Á.; Hawkins, Bradford A. (2006). "Broad-scale patterns of body size in squamate reptiles of Europe and North America". Journal of Biogeography . 33 (5): 781–793. Bibcode:2006JBiog..33..781O. doi:10.1111/j.1365-2699.2006.01435.x. S2CID   59440368.
  12. 1 2 Timofeev, S. F. (2001). "Bergmann's Principle and Deep-Water Gigantism in Marine Crustaceans". Biology Bulletin of the Russian Academy of Sciences. 28 (6): 646–650. doi:10.1023/A:1012336823275. S2CID   28016098.
  13. Meiri, S.; Dayan, T. (2003-03-20). "On the validity of Bergmann's rule". Journal of Biogeography. 30 (3): 331–351. Bibcode:2003JBiog..30..331M. doi:10.1046/j.1365-2699.2003.00837.x. S2CID   11954818.
  14. Ashton, Kyle G.; Tracy, Mark C.; Queiroz, Alan de (October 2000). "Is Bergmann's Rule Valid for Mammals?". The American Naturalist . 156 (4): 390–415. doi:10.1086/303400. JSTOR   10.1086/303400. PMID   29592141. S2CID   205983729.
  15. Millien, Virginie; Lyons, S. Kathleen; Olson, Link; et al. (May 23, 2006). "Ecotypic variation in the context of global climate change: Revisiting the rules". Ecology Letters . 9 (7): 853–869. Bibcode:2006EcolL...9..853M. doi:10.1111/j.1461-0248.2006.00928.x. PMID   16796576. S2CID   13803040.
  16. Rensch, B. (September 1948). "Histological Changes Correlated with Evolutionary Changes of Body Size". Evolution . 2 (3): 218–230. doi:10.2307/2405381. JSTOR   2405381. PMID   18884663.
  17. Stanley, S. M. (March 1973). "An Explanation for Cope's Rule". Evolution . 27 (1): 1–26. doi:10.2307/2407115. JSTOR   2407115. PMID   28563664.
  18. McClain, Craig (2015-01-14). "Why isn't the Giant Isopod larger?". Deep Sea News. Retrieved 1 March 2018.
  19. Dollo, Louis (1893). "Les lois de l'évolution" (PDF). Bull. Soc. Belge Geol. Pal. Hydr. VII: 164–166.
  20. Gould, Stephen J. (1970). "Dollo on Dollo's law: irreversibility and the status of evolutionary laws". Journal of the History of Biology. 3 (2): 189–212. doi:10.1007/BF00137351. PMID   11609651. S2CID   45642853.
  21. Goldberg, Emma E.; Boris Igić (2008). "On phylogenetic tests of irreversible evolution". Evolution. 62 (11): 2727–2741. doi:10.1111/j.1558-5646.2008.00505.x. PMID   18764918. S2CID   30703407.
  22. Collin, Rachel; Maria Pia Miglietta (2008). "Reversing opinions on Dollo's Law". Trends in Ecology & Evolution. 23 (11): 602–609. Bibcode:2008TEcoE..23..602C. doi:10.1016/j.tree.2008.06.013. PMID   18814933.
  23. Eichler, Wolfdietrich (1942). "Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parasitogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten" (PDF). Zoologischer Anzeiger . 136: 77–83. Archived from the original (PDF) on 2017-03-04. Retrieved 2018-04-06.
  24. Klassen, G. J. (1992). "Coevolution: a history of the macroevolutionary approach to studying host-parasite associations". Journal of Parasitology. 78 (4): 573–87. doi:10.2307/3283532. JSTOR   3283532. PMID   1635016.
  25. Vas, Z.; Csorba, G.; Rozsa, L. (2012). "Evolutionary co-variation of host and parasite diversity – the first test of Eichler's rule using parasitic lice (Insecta: Phthiraptera)" (PDF). Parasitology Research. 111 (1): 393–401. doi:10.1007/s00436-012-2850-9. PMID   22350674. S2CID   14923342.
  26. Richard Deslippe (2010). "Social Parasitism in Ants". Nature Education Knowledge. Retrieved 2010-10-29. In 1909, the taxonomist Carlo Emery made an important generalization, now known as Emery's rule, which states that social parasites and their hosts share common ancestry and hence are closely related to each other (Emery 1909).
  27. Emery, Carlo (1909). "Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen". Biologisches Centralblatt (in German). 29: 352–362.
  28. Juan Luis Arsuaga, Andy Klatt, The Neanderthal's Necklace: In Search of the First Thinkers, Thunder's Mouth Press, 2004, ISBN   1-56858-303-6, ISBN   978-1-56858-303-7, p. 199.
  29. Jean-Baptiste de Panafieu, Patrick Gries, Evolution, Seven Stories Press, 2007, ISBN   1-58322-784-9, ISBN   978-1-58322-784-8, p 42.
  30. Lomolino, Mark V. (February 1985). "Body Size of Mammals on Islands: The Island Rule Reexamined". The American Naturalist. 125 (2): 310–316. doi:10.1086/284343. JSTOR   2461638. S2CID   84642837.
  31. Foster, J.B. (1964). "The evolution of mammals on islands". Nature. 202 (4929): 234–235. Bibcode:1964Natur.202..234F. doi:10.1038/202234a0. S2CID   7870628.
  32. Hardin, Garrett (1960). "The competitive exclusion principle" (PDF). Science. 131 (3409): 1292–1297. Bibcode:1960Sci...131.1292H. doi:10.1126/science.131.3409.1292. PMID   14399717. Archived from the original (PDF) on 2017-11-17. Retrieved 2017-01-10.
  33. Zink, R.M.; Remsen, J.V. (1986). "Evolutionary processes and patterns of geographic variation in birds". Current Ornithology . 4: 1–69.
  34. Turelli, M.; Orr, H. Allen (May 1995). "The Dominance Theory of Haldane's Rule". Genetics . 140 (1): 389–402. doi:10.1093/genetics/140.1.389. PMC   1206564 . PMID   7635302.
  35. Queller, D.C.; Strassman, J.E. (2002). "Quick Guide: Kin Selection". Current Biology . 12 (24): R832. doi: 10.1016/s0960-9822(02)01344-1 . PMID   12498698.
  36. Harrison, Launcelot (1915). "Mallophaga from Apteryx, and their significance; with a note on the genus Rallicola" (PDF). Parasitology . 8: 88–100. doi:10.1017/S0031182000010428. S2CID   84334233. Archived from the original (PDF) on 2017-11-07. Retrieved 2018-04-06.
  37. Morand, S.; Legendre, P.; Gardner, SL; Hugot, JP (1996). "Body size evolution of oxyurid (Nematoda) parasites: the role of hosts". Oecologia . 107 (2): 274–282. Bibcode:1996Oecol.107..274M. doi:10.1007/BF00327912. PMID   28307314. S2CID   13512689.
  38. Morand, S.; Sorci, G. (1998). "Determinants of life-history evolution in nematodes". Parasitology Today . 14 (5): 193–196. doi:10.1016/S0169-4758(98)01223-X. PMID   17040750.
  39. Harvey, P.H.; Keymer, A.E. (1991). "Comparing life histories using phylogenies". Philosophical Transactions of the Royal Society B . 332 (1262): 31–39. Bibcode:1991RSPTB.332...31H. doi:10.1098/rstb.1991.0030.
  40. Morand, S.; Hafner, M.S.; Page, R.D.M.; Reed, D.L. (2000). "Comparative body size relationships in pocket gophers and their chewing lice". Zoological Journal of the Linnean Society . 70 (2): 239–249. doi: 10.1111/j.1095-8312.2000.tb00209.x .
  41. Johnson, K.P.; Bush, S.E.; Clayton, D.H. (2005). "Correlated evolution of host and parasite body size: tests of Harrison's rule using birds and lice". Evolution . 59 (8): 1744–1753. doi: 10.1111/j.0014-3820.2005.tb01823.x . PMID   16329244.
  42. "Centers of Origin, Vicariance Biogeography". The University of Arizona Geosciences. Retrieved 12 October 2016.
  43. McDowall, R. M. (March 2008). "Jordan's and other ecogeographical rules, and the vertebral number in fishes". Journal of Biogeography. 35 (3): 501–508. Bibcode:2008JBiog..35..501M. doi:10.1111/j.1365-2699.2007.01823.x.
  44. Kleiber, M. (1932-01-01). "Body size and metabolism". Hilgardia. 6 (11): 315–353. doi:10.3733/hilg.v06n11p315. ISSN   0073-2230.
  45. Lack, David (1954). The regulation of animal numbers . Clarendon Press.
  46. Stevens, G. C. (1989). "The latitudinal gradients in geographical range: how so many species co-exist in the tropics". American Naturalist. 133 (2): 240–256. doi:10.1086/284913. S2CID   84158740.
  47. Fairbairn, D.J. (1997). "Allometry for Sexual Size Dimorphism: Pattern and Process in the Coevolution of Body Size in Males and Females". Annu. Rev. Ecol. Syst. 28 (1): 659–687. doi:10.1146/annurev.ecolsys.28.1.659.
  48. Rensch, Bernhard (1950). "Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse". Bonner Zoologische Beiträge. 1: 58–69.
  49. Lewontin, Richard; Levins, Richard (2000). "Schmalhausen's Law". Capitalism, Nature, Socialism. 11 (4): 103–108. doi:10.1080/10455750009358943. S2CID   144792017.
  50. Thorson, G. 1957 Bottom communities (sublittoral or shallow shelf). In "Treatise on Marine Ecology and Palaeoecology" (Ed J.W. Hedgpeth) pp. 461-534. Geological Society of America.
  51. Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a reevaluation. Marine Biology 19: 193-213
  52. "Leigh Van Valen, evolutionary theorist and paleobiology pioneer, 1935-2010". University of Chicago. 20 October 2010.
  53. Opitz, John M.; Schultka, Rüdiger; Göbbel, Luminita (2006). "Meckel on developmental pathology". American Journal of Medical Genetics Part A. 140A (2): 115–128. doi:10.1002/ajmg.a.31043. PMID   16353245. S2CID   30513424.
  54. Garstang, Walter (1922). "The Theory of Recapitulation: A Critical Re-statement of the Biogenetic Law". Journal of the Linnean Society of London, Zoology. 35 (232): 81–101. doi:10.1111/j.1096-3642.1922.tb00464.x.
  55. Williston, Samuel Wendall (1914). Water Reptiles of the Past and Present. Chicago: University of Chicago Press.