Biological rules

Last updated
The pygmy mammoth is an example of insular dwarfism, a case of Foster's rule, its unusually small body size an adaptation to the limited resources of its island home. M. exilis skeletal.png
The pygmy mammoth is an example of insular dwarfism, a case of Foster's rule, its unusually small body size an adaptation to the limited resources of its island home.

A biological rule or biological law is a generalized law, principle, or rule of thumb formulated to describe patterns observed in living organisms. Biological rules and laws are often developed as succinct, broadly applicable ways to explain complex phenomena or salient observations about the ecology and biogeographical distributions of plant and animal species around the world, though they have been proposed for or extended to all types of organisms. Many of these regularities of ecology and biogeography are named after the biologists who first described them. [1] [2]

Contents

From the birth of their science, biologists have sought to explain apparent regularities in observational data. In his biology, Aristotle inferred rules governing differences between live-bearing tetrapods (in modern terms, terrestrial placental mammals). Among his rules were that brood size decreases with adult body mass, while lifespan increases with gestation period and with body mass, and fecundity decreases with lifespan. Thus, for example, elephants have smaller and fewer broods than mice, but longer lifespan and gestation. [3] Rules like these concisely organized the sum of knowledge obtained by early scientific measurements of the natural world, and could be used as models to predict future observations. Among the earliest biological rules in modern times are those of Karl Ernst von Baer (from 1828 onwards) on embryonic development (see von Baer's laws), [4] and of Constantin Wilhelm Lambert Gloger on animal pigmentation, in 1833 (see Gloger's rule). [5] There is some scepticism among biogeographers about the usefulness of general rules. For example, J.C. Briggs, in his 1987 book Biogeography and Plate Tectonics, comments that while Willi Hennig's rules on cladistics "have generally been helpful", his progression rule is "suspect". [6]

List of biological rules

Bergmann's rule states that body mass increases with colder climate, as here in Swedish moose. Bergmann's Rule.svg
Bergmann's rule states that body mass increases with colder climate, as here in Swedish moose.
Dollo's law of irreversibility asserts that once an organism has evolved in a certain way, it will not return exactly to a previous form. Dollo's law of irreversibility.svg
Dollo's law of irreversibility asserts that once an organism has evolved in a certain way, it will not return exactly to a previous form.

See also

References

  1. Jørgensen, Sven Erik (2002). "Explanation of ecological rules and observation by application of ecosystem theory and ecological models". Ecological Modelling. 158 (3): 241–248. Bibcode:2002EcMod.158..241J. doi:10.1016/S0304-3800(02)00236-3.
  2. Allee, W.C.; Schmidt, K.P. (1951). Ecological Animal Geography (2nd ed.). Joh Wiley & sons. pp.  457, 460–472.
  3. Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. p. 408. ISBN   978-1-4088-3622-4.
  4. 1 2 Lovtrup, Soren (1978). "On von Baerian and Haeckelian Recapitulation". Systematic Zoology. 27 (3): 348–352. doi:10.2307/2412887. JSTOR   2412887.
  5. 1 2 Gloger, Constantin Wilhelm Lambert (1833). "5. Abänderungsweise der einzelnen, einer Veränderung durch das Klima unterworfenen Farben". Das Abändern der Vögel durch Einfluss des Klimas [The Evolution of Birds Through the Impact of Climate] (in German). Breslau: August Schulz. pp. 11–24. ISBN   978-3-8364-2744-9. OCLC   166097356.{{cite book}}: ISBN / Date incompatibility (help)
  6. 1 2 Briggs, J.C. (1987). Biogeography and Plate Tectonics. Elsevier. p. 11. ISBN   978-0-08-086851-6.
  7. Sand, Håkan K.; Cederlund, Göran R.; Danell, Kjell (June 1995). "Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces)". Oecologia . 102 (4): 433–442. Bibcode:1995Oecol.102..433S. doi:10.1007/BF00341355. PMID   28306886. S2CID   5937734.
  8. Allen, Joel Asaph (1877). "The influence of Physical conditions in the genesis of species". Radical Review. 1: 108–140.
  9. Lopez, Barry Holstun (1986). Arctic Dreams: Imagination and Desire in a Northern Landscape. Scribner. ISBN   978-0-684-18578-1.
  10. Held, Lewis I.; Sessions, Stanley K. (2019). "Reflections on Bateson's rule: Solving an old riddle about why extra legs are mirror-symmetric". Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 332 (7): 219–237. Bibcode:2019JEZB..332..219H. doi:10.1002/jez.b.22910. ISSN   1552-5007. PMID   31613418. S2CID   204704335.
  11. Olalla-Tárraga, Miguel Á.; Rodríguez, Miguel Á.; Hawkins, Bradford A. (2006). "Broad-scale patterns of body size in squamate reptiles of Europe and North America". Journal of Biogeography . 33 (5): 781–793. Bibcode:2006JBiog..33..781O. doi:10.1111/j.1365-2699.2006.01435.x. S2CID   59440368.
  12. 1 2 Timofeev, S. F. (2001). "Bergmann's Principle and Deep-Water Gigantism in Marine Crustaceans". Biology Bulletin of the Russian Academy of Sciences. 28 (6): 646–650. doi:10.1023/A:1012336823275. S2CID   28016098.
  13. Meiri, S.; Dayan, T. (2003-03-20). "On the validity of Bergmann's rule". Journal of Biogeography. 30 (3): 331–351. Bibcode:2003JBiog..30..331M. doi:10.1046/j.1365-2699.2003.00837.x. S2CID   11954818.
  14. Ashton, Kyle G.; Tracy, Mark C.; Queiroz, Alan de (October 2000). "Is Bergmann's Rule Valid for Mammals?". The American Naturalist . 156 (4): 390–415. doi:10.1086/303400. JSTOR   10.1086/303400. PMID   29592141. S2CID   205983729.
  15. Millien, Virginie; Lyons, S. Kathleen; Olson, Link; et al. (May 23, 2006). "Ecotypic variation in the context of global climate change: Revisiting the rules". Ecology Letters . 9 (7): 853–869. Bibcode:2006EcolL...9..853M. doi:10.1111/j.1461-0248.2006.00928.x. PMID   16796576. S2CID   13803040.
  16. Rensch, B. (September 1948). "Histological Changes Correlated with Evolutionary Changes of Body Size". Evolution . 2 (3): 218–230. doi:10.2307/2405381. JSTOR   2405381. PMID   18884663.
  17. Stanley, S. M. (March 1973). "An Explanation for Cope's Rule". Evolution . 27 (1): 1–26. doi:10.2307/2407115. JSTOR   2407115. PMID   28563664.
  18. McClain, Craig (2015-01-14). "Why isn't the Giant Isopod larger?". Deep Sea News. Retrieved 1 March 2018.
  19. Dollo, Louis (1893). "Les lois de l'évolution" (PDF). Bull. Soc. Belge Geol. Pal. Hydr. VII: 164–166.
  20. Gould, Stephen J. (1970). "Dollo on Dollo's law: irreversibility and the status of evolutionary laws". Journal of the History of Biology. 3 (2): 189–212. doi:10.1007/BF00137351. PMID   11609651. S2CID   45642853.
  21. Goldberg, Emma E.; Boris Igić (2008). "On phylogenetic tests of irreversible evolution". Evolution. 62 (11): 2727–2741. doi:10.1111/j.1558-5646.2008.00505.x. PMID   18764918. S2CID   30703407.
  22. Collin, Rachel; Maria Pia Miglietta (2008). "Reversing opinions on Dollo's Law". Trends in Ecology & Evolution. 23 (11): 602–609. Bibcode:2008TEcoE..23..602C. doi:10.1016/j.tree.2008.06.013. PMID   18814933.
  23. Eichler, Wolfdietrich (1942). "Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parasitogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten" (PDF). Zoologischer Anzeiger . 136: 77–83. Archived from the original (PDF) on 2017-03-04. Retrieved 2018-04-06.
  24. Klassen, G. J. (1992). "Coevolution: a history of the macroevolutionary approach to studying host-parasite associations". Journal of Parasitology. 78 (4): 573–87. doi: 10.2307/3283532 . JSTOR   3283532. PMID   1635016.
  25. Vas, Z.; Csorba, G.; Rozsa, L. (2012). "Evolutionary co-variation of host and parasite diversity – the first test of Eichler's rule using parasitic lice (Insecta: Phthiraptera)" (PDF). Parasitology Research. 111 (1): 393–401. doi:10.1007/s00436-012-2850-9. PMID   22350674. S2CID   14923342.
  26. Richard Deslippe (2010). "Social Parasitism in Ants". Nature Education Knowledge. Retrieved 2010-10-29. In 1909, the taxonomist Carlo Emery made an important generalization, now known as Emery's rule, which states that social parasites and their hosts share common ancestry and hence are closely related to each other (Emery 1909).
  27. Emery, Carlo (1909). "Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen". Biologisches Centralblatt (in German). 29: 352–362.
  28. Juan Luis Arsuaga, Andy Klatt, The Neanderthal's Necklace: In Search of the First Thinkers, Thunder's Mouth Press, 2004, ISBN   1-56858-303-6, ISBN   978-1-56858-303-7, p. 199.
  29. Jean-Baptiste de Panafieu, Patrick Gries, Evolution, Seven Stories Press, 2007, ISBN   1-58322-784-9, ISBN   978-1-58322-784-8, p 42.
  30. Lomolino, Mark V. (February 1985). "Body Size of Mammals on Islands: The Island Rule Reexamined". The American Naturalist. 125 (2): 310–316. doi:10.1086/284343. JSTOR   2461638. S2CID   84642837.
  31. Foster, J.B. (1964). "The evolution of mammals on islands". Nature. 202 (4929): 234–235. Bibcode:1964Natur.202..234F. doi:10.1038/202234a0. S2CID   7870628.
  32. Hardin, Garrett (1960). "The competitive exclusion principle" (PDF). Science. 131 (3409): 1292–1297. Bibcode:1960Sci...131.1292H. doi:10.1126/science.131.3409.1292. PMID   14399717. Archived from the original (PDF) on 2017-11-17. Retrieved 2017-01-10.
  33. Zink, R.M.; Remsen, J.V. (1986). "Evolutionary processes and patterns of geographic variation in birds". Current Ornithology . 4: 1–69.
  34. Turelli, M.; Orr, H. Allen (May 1995). "The Dominance Theory of Haldane's Rule". Genetics . 140 (1): 389–402. doi:10.1093/genetics/140.1.389. PMC   1206564 . PMID   7635302.
  35. Queller, D.C.; Strassman, J.E. (2002). "Quick Guide: Kin Selection". Current Biology . 12 (24): R832. doi: 10.1016/s0960-9822(02)01344-1 . PMID   12498698.
  36. Harrison, Launcelot (1915). "Mallophaga from Apteryx, and their significance; with a note on the genus Rallicola" (PDF). Parasitology . 8: 88–100. doi:10.1017/S0031182000010428. S2CID   84334233. Archived from the original (PDF) on 2017-11-07. Retrieved 2018-04-06.
  37. Morand, S.; Legendre, P.; Gardner, SL; Hugot, JP (1996). "Body size evolution of oxyurid (Nematoda) parasites: the role of hosts" . Oecologia . 107 (2): 274–282. Bibcode:1996Oecol.107..274M. doi:10.1007/BF00327912. PMID   28307314. S2CID   13512689.
  38. Morand, S.; Sorci, G. (1998). "Determinants of life-history evolution in nematodes". Parasitology Today . 14 (5): 193–196. doi:10.1016/S0169-4758(98)01223-X. PMID   17040750.
  39. Harvey, P.H.; Keymer, A.E. (1991). "Comparing life histories using phylogenies". Philosophical Transactions of the Royal Society B . 332 (1262): 31–39. Bibcode:1991RSPTB.332...31H. doi:10.1098/rstb.1991.0030.
  40. Morand, S.; Hafner, M.S.; Page, R.D.M.; Reed, D.L. (2000). "Comparative body size relationships in pocket gophers and their chewing lice". Zoological Journal of the Linnean Society . 70 (2): 239–249. doi: 10.1111/j.1095-8312.2000.tb00209.x .
  41. Johnson, K.P.; Bush, S.E.; Clayton, D.H. (2005). "Correlated evolution of host and parasite body size: tests of Harrison's rule using birds and lice". Evolution . 59 (8): 1744–1753. doi: 10.1111/j.0014-3820.2005.tb01823.x . PMID   16329244.
  42. "Centers of Origin, Vicariance Biogeography". The University of Arizona Geosciences. Retrieved 12 October 2016.
  43. McDowall, R. M. (March 2008). "Jordan's and other ecogeographical rules, and the vertebral number in fishes". Journal of Biogeography. 35 (3): 501–508. Bibcode:2008JBiog..35..501M. doi:10.1111/j.1365-2699.2007.01823.x.
  44. Kleiber, M. (1932-01-01). "Body size and metabolism". Hilgardia. 6 (11): 315–353. doi:10.3733/hilg.v06n11p315. ISSN   0073-2230.
  45. Lack, David (1954). The regulation of animal numbers . Clarendon Press.
  46. Stevens, G. C. (1989). "The latitudinal gradients in geographical range: how so many species co-exist in the tropics". American Naturalist. 133 (2): 240–256. doi:10.1086/284913. S2CID   84158740.
  47. Fairbairn, D.J. (1997). "Allometry for Sexual Size Dimorphism: Pattern and Process in the Coevolution of Body Size in Males and Females". Annu. Rev. Ecol. Syst. 28 (1): 659–687. doi:10.1146/annurev.ecolsys.28.1.659.
  48. Rensch, Bernhard (1950). "Die Abhängigkeit der relativen Sexualdifferenz von der Körpergrösse". Bonner Zoologische Beiträge. 1: 58–69.
  49. Lewontin, Richard; Levins, Richard (2000). "Schmalhausen's Law". Capitalism, Nature, Socialism. 11 (4): 103–108. doi:10.1080/10455750009358943. S2CID   144792017.
  50. Thorson, G. 1957 Bottom communities (sublittoral or shallow shelf). In "Treatise on Marine Ecology and Palaeoecology" (Ed J.W. Hedgpeth) pp. 461-534. Geological Society of America.
  51. Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a reevaluation. Marine Biology 19: 193-213
  52. "Leigh Van Valen, evolutionary theorist and paleobiology pioneer, 1935-2010". University of Chicago. 20 October 2010.
  53. Opitz, John M.; Schultka, Rüdiger; Göbbel, Luminita (2006). "Meckel on developmental pathology". American Journal of Medical Genetics Part A. 140A (2): 115–128. doi:10.1002/ajmg.a.31043. PMID   16353245. S2CID   30513424.
  54. Garstang, Walter (1922). "The Theory of Recapitulation: A Critical Re-statement of the Biogenetic Law". Journal of the Linnean Society of London, Zoology. 35 (232): 81–101. doi:10.1111/j.1096-3642.1922.tb00464.x.
  55. Williston, Samuel Wendall (1914). Water Reptiles of the Past and Present. Chicago: University of Chicago Press.