Ovoviviparity

Last updated
The characteristic quivering abdomen caused by movement of tadpoles within a pregnant female Limnonectes larvaepartus .

Ovoviviparity, ovovivipary, ovivipary, or aplacental viviparity is a term used as a "bridging" form of reproduction between egg-laying oviparous and live-bearing viviparous reproduction. Ovoviviparous animals possess embryos that develop inside eggs that remain in the mother's body until they are ready to hatch.

Contents

The young of some ovoviviparous amphibians, such as Limnonectes larvaepartus , are born as larvae, and undergo further metamorphosis outside the body of the mother. Members of genera Nectophrynoides and Eleutherodactylus bear froglets, not only the hatching, but all the most conspicuous metamorphosis, being completed inside the body of the mother before birth.

Among insects that depend on opportunistic exploitation of transient food sources, such as many Sarcophagidae and other carrion flies, and species such as many Calliphoridae, that rely on fresh dung, and parasitoids such as tachinid flies that depend on entering the host as soon as possible, the embryos commonly develop to the first larval instar inside the mother's reproductive tract, and they hatch just before being laid or almost immediately afterwards.

Ovoviviparity

Ovoviviparous animals are those animals that are similar to viviparous species in which there is internal fertilization and the young are born alive, but differ in that there is no placental connection and the unborn young are nourished by egg; the mother's body does provide gas exchange.[ citation needed ]

In some species, the internally developing embryos rely solely on yolk. This is known as "yolk-sac viviparity" and is regarded as a type of lecithotrophy (no maternal provisioning). Other species exhibit matrotrophy, in which the embryo exhausts its yolk supply early in gestation and the mother provides additional nutrition. This additional provisioning may be in the form of unfertilized eggs (intrauterine oophagy), uterine secretions (histotrophy) or it may be delivered through a placenta. The first two of these modes were categorized under histotroph viviparity, [1] or aplacental viviparity. [2]

Amphibians

The young of ovoviviparous amphibians are sometimes born as larvae, and undergo metamorphosis outside the body of the mother. Modes of reproduction include [3] based on relations between zygote and parents:

Ovolarviparity

Some insects, notably tachinid flies, are ovolarviparous, which means that the embryos develop into the first larval stage (instar) within the eggs while still in the female's oviduct. As a result, the larvae hatch more rapidly, sometimes immediately after egg deposition, and can begin feeding right away. A similar phenomenon is larviparity, in which larvae hatch before the female delivers them, although this may be mistakenly identified in species with very thin and transparent egg membranes. [5] [6]

Criticisms and disuse

A lack of a rigidly defined term resulted in widespread misuse of the term ovoviviparity in the biological literature. [7] Ovoviviparity has been used to describe delayed forms of egg-laying reproduction as well as live-bearing species that provide maternal nutrients but do not use a placenta. [7] This widespread misuse of the term has led to confusion over what earlier authors meant when using the name. Modern practice has seen the disuse of ovoviviparity in favour of the more specific definitions of lecithotrophic and matrotrophic oviparity and viviparity. [8]

Related Research Articles

<span class="mw-page-title-main">Amphibian</span> Class of ectothermic tetrapods

Amphibians are ectothermic, anamniotic, four-limbed vertebrate animals that constitute the class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all tetrapods, excluding the amniotes. All extant (living) amphibians belong to the monophyletic subclass Lissamphibia, with three living orders: Anura (frogs), Urodela (salamanders), and Gymnophiona (caecilians). Evolved to be mostly semiaquatic, amphibians have adapted to inhabit a wide variety of habitats, with most species living in freshwater, wetland or terrestrial ecosystems. Their life cycle typically starts out as aquatic larvae with gills known as tadpoles, but some species have developed behavioural adaptations to bypass this.

<span class="mw-page-title-main">Gestation</span> Period during the carrying of an embryo

Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals. It is typical for mammals, but also occurs for some non-mammals. Mammals during pregnancy can have one or more gestations at the same time, for example in a multiple birth.

<span class="mw-page-title-main">Livebearers</span> Fish that give birth to free swimming offspring

Livebearers are fish that retain their eggs inside the body and give birth to live, free-swimming young. They are especially prized by aquarium owners. Among aquarium fish, livebearers are nearly all members of the family Poeciliidae and include: guppies, mollies, platies and swordtails.

<span class="mw-page-title-main">Birth</span> Process of bearing offspring

Birth is the act or process of bearing or bringing forth offspring, also referred to in technical contexts as parturition. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the fetus at a developmental stage when it is ready to feed and breathe.

<span class="mw-page-title-main">Egg cell</span> Female reproductive cell in most anisogamous organisms

The egg cell or ovum is the female reproductive cell, or gamete, in most anisogamous organisms. The term is used when the female gamete is not capable of movement (non-motile). If the male gamete (sperm) is capable of movement, the type of sexual reproduction is also classified as oogamous. A nonmotile female gamete formed in the oogonium of some algae, fungi, oomycetes, or bryophytes is an oosphere. When fertilized, the oosphere becomes the oospore.

<span class="mw-page-title-main">Viviparity</span> Development of the embryo inside the mother

In animals, viviparity is development of the embryo inside the body of the mother, with the maternal circulation providing for the metabolic needs of the embryo's development, until the mother gives birth to a fully or partially developed juvenile that is at least metabolically independent. This is opposed to oviparity, where the embryos develop independently outside the mother in eggs until they are developed enough to break out as hatchlings; and ovoviviparity, where the embryos are developed in eggs that remain carried inside the mother's body until the hatchlings emerge from the mother as juveniles, similar to a live birth.

<span class="mw-page-title-main">Egg</span> Organic vessel in which an embryo first begins to develop

An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell and to incubate from it an embryo within the egg until the embryo has become an animal fetus that can survive on its own, at which point the animal hatches.

<span class="mw-page-title-main">Viviparous lizard</span> Species of lizard

The viviparous lizard, or common lizard, is a Eurasian lizard. It lives farther north than any other species of non-marine reptile, and is named for the fact that it is viviparous, meaning it gives birth to live young. Both "Zootoca" and "vivipara" mean "live birth", in (Latinized) Greek and Latin respectively. It was called Lacerta vivipara until the genus Lacerta was split into nine genera in 2007 by Arnold, Arribas & Carranza.

<span class="mw-page-title-main">Internal fertilization</span> Union of an egg and sperm to form a zygote within the female body

Internal fertilization is the union of an egg and sperm cell during sexual reproduction inside the female body. Internal fertilization, unlike its counterpart, external fertilization, brings more control to the female with reproduction. For internal fertilization to happen there needs to be a method for the male to introduce the sperm into the female's reproductive tract.

<span class="mw-page-title-main">Fish reproduction</span> Reproductive physiology of fishes

Fish reproductive organs include testes and ovaries. In most species, gonads are paired organs of similar size, which can be partially or totally fused. There may also be a range of secondary organs that increase reproductive fitness. The genital papilla is a small, fleshy tube behind the anus in some fishes, from which the sperm or eggs are released; the sex of a fish can often be determined by the shape of its papilla.

<span class="mw-page-title-main">Oviparity</span> Animals that lay their eggs, with little or no other embryonic development within the mother

Oviparous animals are animals that reproduce by depositing fertilized zygotes outside the body in metabolically independent incubation organs known as eggs, which nurture the embryo into moving offsprings known as hatchlings with little or no embryonic development within the mother. This is the reproductive method used by most animal species, as opposed to viviparous animals that develop the embryos internally and metabolically dependent on the maternal circulation, until the mother gives birth to live juveniles.

<span class="mw-page-title-main">Proscylliidae</span> Family of sharks

The finback catsharks are a small family, the Proscylliidae, of ground sharks. They can be found in warm seas worldwide and are often the most numerous and common shark in tropical regions. They are generally less than 1 m in length, and are slow-moving predators that feed on bony fish and small invertebrates. Although some bear live young, the majority lay eggs with almost fully developed young; these egg cases, known as "mermaid's purses", are unique in appearance to each species.

<span class="mw-page-title-main">Spawn (biology)</span> Process of aquatic animals releasing sperm and eggs into water

Spawn is the eggs and sperm released or deposited into water by aquatic animals. As a verb, to spawn refers to the process of freely releasing eggs and sperm into a body of water ; the physical act is known as spawning. The vast majority of non-mammalian, non-avian and non-reptilian aquatic and/or amphibious lifeforms reproduce through this process, including the:

<i>Saiphos</i> Species of reptile

Saiphos equalis, commonly known as the yellow-bellied three-toed skink or simply three-toed skink, is a species of burrowing skink found in eastern Australia. It is the only species classified under the genus Saiphos.

Histotrophy is a form of matrotrophy exhibited by some live-bearing sharks and rays, in which the developing embryo receives additional nutrition from its mother in the form of uterine secretions, known as histotroph. It is one of the three major modes of elasmobranch reproduction encompassed by "aplacental viviparity", and can be contrasted with yolk-sac viviparity and oophagy.

<i>Cryptasterina hystera</i> Species of starfish

Cryptasterina hystera is a species of starfish. It is found in a limited region of the coast of Australia and is very similar in appearance to Cryptasterina pentagona. The two appear to have diverged from a common ancestral line a few thousand years ago.

<span class="mw-page-title-main">Pregnancy in fish</span>

Pregnancy has been traditionally defined as the period of time eggs are incubated in the body after the egg-sperm union. Although the term often refers to placental mammals, it has also been used in the titles of many international, peer-reviewed, scientific articles on fish, e.g. Consistent with this definition, there are several modes of reproduction in fish, providing different amounts of parental care. In ovoviviparity, there is internal fertilization and the young are born live but there is no placental connection or significant trophic (feeding) interaction; the mother's body maintains gas exchange but the unborn young are nourished by egg yolk. There are two types of viviparity in fish. In histotrophic viviparity, the zygotes develop in the female's oviducts, but she provides no direct nutrition; the embryos survive by eating her eggs or their unborn siblings. In hemotrophic viviparity, the zygotes are retained within the female and are provided with nutrients by her, often through some form of placenta.

<span class="mw-page-title-main">Modes of reproduction</span>

Animals make use of a variety of modes of reproduction to produce their young. Traditionally this variety was classified into three modes, oviparity, viviparity, and ovoviviparity.

Vertebrate maternal behavior is a form of parental care that is specifically given to young animals by their mother in order to ensure the survival of the young. Parental care is a form of altruism, which means that the behaviors involved often require a sacrifice that could put their own survival at risk. This encompasses behaviors that aid in the evolutionary success of the offspring and parental investment, which is a measure of expenditure exerted by the parent in an attempt to provide evolutionary benefits to the offspring. Therefore, it is a measure of the benefits versus costs of engaging in the parental behaviors. Behaviors commonly exhibited by the maternal parent include feeding, either by lactating or gathering food, grooming young, and keeping the young warm. Another important aspect of parental care is whether the care is provided to the offspring by each parent in a relatively equal manner, or whether it is provided predominantly or entirely by one parent. There are several species that exhibit biparental care, where behaviors and/or investment in the offspring is divided equally amongst the parents. This parenting strategy is common in birds. However, even in species who exhibit biparental care, the maternal role is essential since the females are responsible for the incubation and/or delivery of the young.

<span class="mw-page-title-main">Gosner stage</span> System of describing stages of development in anurans

Gosner stage is a generalized system of describing stages of embryonal and larval development in anurans. The Gosner system includes 46 numbered stages, from fertilized embryo to the completion of metamorphosis. It was introduced by Kenneth Gosner in 1960. The system is widely used in herpetology to describe exotrophic tadpoles. Gosner stages are based on certain morphological landmarks that allow comparing development in different species that may greatly differ in age or size.

References

  1. Lodé Thierry T. 2012. Oviparity or viviparity ? That is the question. Reproductive Biology 12: 259-264
  2. Carrier, J.C.; Musick, J.A.; Heithaus, M.R., eds. (2012). Biology of Sharks and Their Relatives. CRC Press. pp. 296–301. ISBN   978-1439839249.
  3. Lodé, Thierry (2001). Les stratégies de reproduction des animaux (Reproduction strategies in animal kingdom). Eds Dunod Sciences, Paris
  4. Tyler, M. J. (1994). Australian Frogs: A Natural History. Chapter 12, Gastric Brooding Frogs pp;135–140 Reed Books
  5. Capinera, John L. (2008). "Tachinid Flies (Diptera: Tachinidae)". Encyclopedia of entomology (2nd ed.). Dordrecht: Springer. pp. 3678–3679. ISBN   9781402062421.
  6. Wiman, Nik G.; Jones, Vincent P. (2012). "Influence of oviposition strategy of Nemorilla pyste and Nilea erecta (Diptera: Tachinidae) on parasitoid fertility and host mortality" (PDF). Biological Control. 64 (3): 195–202. doi:10.1016/j.biocontrol.2012.12.008.
  7. 1 2 Blackburn, Daniel. "Discrepant use of the term 'Ovoviviparity' in the Herpetological Literature". Herpetological Journal. 4: 65–72.
  8. Blackburn, Daniel (2015). "Evolution of Vertebrate Viviparity and Specializations for Fetal Nutrition: A Quantitative and Qualitative Analysis". Journal of Morphology. 276 (8): 961–990. doi:10.1002/jmor.20272. PMID   24652663. S2CID   549574.