Trophic egg

Last updated

A trophic egg is an egg whose function is not reproduction but nutrition; in essence, the trophic egg serves as food for offspring hatched from viable eggs. In most species that produce them, a trophic egg is usually an unfertilised egg. The production of trophic eggs has been observed in a highly diverse range of species, including fish, amphibians, spiders and insects. The function is not limited to any particular level of parental care, but occurs in some sub-social species of insects, the spider A. ferox , and a few other species like the frogs Leptodactylus fallax and Oophaga , and the catfish Bagrus meridionalis .

Contents

Parents of some species deliver trophic eggs directly to their offspring, whereas some other species simply produce the trophic eggs after laying the viable eggs; they then leave the trophic eggs where the viable offspring are likely to find them.

The mackerel sharks present the most extreme example of proximity between reproductive eggs and trophic eggs; their viable offspring feed on trophic eggs in utero.

Despite the diversity of species and life strategies in which trophic eggs occur, all trophic egg functions are similarly derived from similar ancestral functions, which once amounted to the sacrifice of potential future offspring in order to provide food for the survival of rival (usually earlier) offspring. In more derived examples the trophic eggs are not viable, being neither fertilised, nor even fully formed in some cases, so they do not represent actually potential offspring, although they still represent parental investment corresponding to the amount of food it took to produce them.

Morphology

Trophic eggs are not always morphologically distinct from normal reproductive eggs; however if there is no physical distinction there tends to be some kind of specialised behaviour in the way that trophic eggs are delivered by the parents.

In some beetles, trophic eggs are paler in colour and softer in texture than reproductive eggs, with a smoother surface on the chorion. [1] It has also been found that trophic eggs in ants have a less pronounced reticulate pattern on the chorion. [2]

The morphological differences may arise due to the fact that mothers invest less energy in the production of trophic eggs than viable eggs.

Summary of cross-species morphology and behaviour

[3]

Species (family)Trophic eggs (TE) morphologically distinctSpecialised behaviour in delivery of TEs
VertebratesFrogs (Dendrobatidae, Leptodactylidae, Hylidae)NoYes (repeated TE laying)
Catfish ( Bagrus meridionalis , Bagridae) ?Yes (repeated TE laying)
Coelacanth ( Latimeria chalumnae , Coelacanthidae)YesYes (TEs supplied continually in oviduct)
Insects Adomerus triguttulus (Cydnidae)YesYes (repeated TE laying)
Anurogryllus muticus (Gryllidae)YesYes (repeated TE laying)
Eusocial insectsVarious ants (Formicidae); queen-produced eggsYesYes (delivery to offspring)
Various ants (Formicidae); worker-produced eggsYesYes (delivery to offspring)
Other invertebratesSeveral polychaete worms (Spionidae)Yes ?
Amaurobius ferox (Amaurobiidae) ?Yes (laid after offspring hatch)
Coelotes terrestris (Agelenidae) ?Yes (laid after offspring hatch)
Several prosobranch gastropods (Buccinidae, Calyptraeidae, Muricidae)YesYes

Ecology

Adaptive plasticity

The behaviour of trophic egg-laying species depends highly on their environment and can be modified via adaptive plasticity in response to environmental variation. The ratio of trophic to viable eggs is determined by the availability of resources, although the absolute number of trophic eggs does not always change. [4] The production of fewer viable eggs ensures that each hatched nymph will have a larger provision of trophic eggs; and therefore give each individual an enhanced chance of survival when external resources are limited. Females can adaptively adjust the egg ratio in response to environmental drivers prior to oviposition.

Reproductive success

When resources are limited, the presence of trophic eggs greatly increases the maturation and survival rates of offspring. There are some species such as the subsocial burrower bug Canthophorus niveimarginatus (Heteroptera: Cydnidae) whose offspring cannot survive at all without the provision of trophic eggs. The nymphs starve to death because trophic eggs are the only thing they are able to feed on. [5] However, when other suitable sources of food are plentiful, feeding on trophic eggs has little effect on brood success. [6]

Sibling cannibalism, common in many spider species, is not affected by the proportion of trophic eggs, since viable eggs are oviposited and hatch synchronously, before trophic eggs are laid. In the spider Amaurobius ferox , trophic eggs are laid the day after spiderlings emerge from their egg sac. The mother's reproductive behaviour is modified by the behaviour of her offspring, and their presence inhibits the second generation of eggs from maturing; instead they are released as infertile trophic eggs. Converting the second generation into food for the first ultimately boosts the mother's reproductive success. [7]

Evolutionary theory

There are no concrete explanations for the evolution of trophic eggs. The two main conflicting arguments are:

If they have evolved (and are now distinct) from functionless by-products of failed reproduction, then trophic eggs should be more easily available and provide more nutrients to the offspring than their evolutionary predecessors. There seems to be clear evidence of this adaptation in many species. This can be seen in mothers making an effort to distribute trophic eggs to their offspring; or eggs which are specialised for the nutritional needs of the offspring. However, in many species, the two types of egg are indistinguishable. Various hypotheses could potentially be tested to determine whether trophic eggs are indeed an evolved phenotype. [3]

It has been suggested that trophic egg-laying evolved as a consequence of limited egg size, since larger eggs with more nutrient supply would require the mother to have a larger body size. Thus, the production of more eggs, some of which are not intended to reach maturity. It is relatively simple for the mother to adjust the ratio of fertilised to non-fertilised eggs, in response to environmental conditions.

An alternative to trophic egg-laying is sibling cannibalism; however this requires the mother to regulate the synchrony of hatching times. However, in this case eggs which are not eaten would continue to develop. If it is difficult for the mother to achieve this synchrony, trophic eggs are a sensible alternative in ensuring that the offspring that hatches will be fed sufficiently.

Examples

Related Research Articles

Parent–offspring conflict (POC) is an expression coined in 1974 by Robert Trivers. It is used to describe the evolutionary conflict arising from differences in optimal parental investment (PI) in an offspring from the standpoint of the parent and the offspring. PI is any investment by the parent in an individual offspring that decreases the parent's ability to invest in other offspring, while the selected offspring's chance of surviving increases.

<span class="mw-page-title-main">Siblicide</span>

Siblicide is the killing of an infant individual by its close relatives. It may occur directly between siblings or be mediated by the parents, and is driven by the direct fitness benefits to the perpetrator and sometimes its parents. Siblicide has mainly, but not only, been observed in birds.

<span class="mw-page-title-main">Sociality</span> Form of collective animal behaviour

Sociality is the degree to which individuals in an animal population tend to associate in social groups (gregariousness) and form cooperative societies.

<i>Phryganoporus candidus</i> Species of spider

Phryganoporus candidus, also known as the foliage web spider, is a small, subsocial jumping spider endemic to Australia. On average, they are 6–10 mm long and are a mottled brown colour, covered in silvery grey hair. They typically reside in arid and semi-arid locations, building their nests in various trees, bushes, and other plant-life. They have a mutualistic relationship with Acacia ligulata, and therefore prefer to build their nests in these trees.

<span class="mw-page-title-main">Cannibalism</span> Consuming another individual of the same species as food

Cannibalism is the act of consuming another individual of the same species as food. Cannibalism is a common ecological interaction in the animal kingdom and has been recorded in more than 1,500 species. Human cannibalism is well documented, both in ancient and in recent times.

<span class="mw-page-title-main">Spider cannibalism</span> Spiders consuming all or part of another individual of the same species as food

Spider cannibalism is the act of a spider consuming all or part of another individual of the same species as food. It is most commonly seen as an example of female sexual cannibalism where a female spider kills and eats a male before, during, or after copulation. Cases of non-sexual cannibalism or male cannibalism of females both occur but are notably rare.

<i>Stegodyphus lineatus</i> Species of spider

Stegodyphus lineatus is the only European species of the spider genus Stegodyphus. Male S. lineatus can grow up to 12 mm long while females can grow up to 15 mm. The colour can range from whitish to almost black. In most individuals the opisthosoma is whitish with two broad black longitudinal stripes. Males and females look similar, but the male is generally richer in contrast and has a bulbous forehead. The species name refers to the black lines on the back of these spiders. S. lineatus is found in the southern Mediterranean region of Europe and as far east as Tajikistan.

<span class="mw-page-title-main">Scissortail sergeant</span> Species of fish

The scissortail sergeant or striptailed damselfish is a large damselfish. It earns its name from the black-striped tail and sides, which are reminiscent of the insignia of a military Sergeant, being similar to those of the sergeant major damselfish. It grows to a length of about 16 centimetres (6.3 in).

<span class="mw-page-title-main">Parental care</span>

Parental care is a behavioural and evolutionary strategy adopted by some animals, involving a parental investment being made to the evolutionary fitness of offspring. Patterns of parental care are widespread and highly diverse across the animal kingdom. There is great variation in different animal groups in terms of how parents care for offspring, and the amount of resources invested by parents. For example, there may be considerable variation in the amount of care invested by each sex, where females may invest more in some species, males invest more in others, or investment may be shared equally. Numerous hypotheses have been proposed to describe this variation and patterns in parental care that exist between the sexes, as well as among species.

<i>Umbonia crassicornis</i> Species of true bug

Umbonia crassicornis, commonly known as the thorn bug, is a widespread member of the insect family Membracidae, and an occasional pest of ornamentals and fruit trees in southern Florida. The body length of the adult is approximately 10 millimetres (0.39 in). This is a variable species as to size, color and structure, particularly the pronotal horn of males. This tall, essentially perpendicular thorn-like pronotum discourages birds and other predators from eating it, if only by mistakenly confusing it with a thorn. Typically, the adult is green or yellow with reddish lines and brownish markings.

<i>Amaurobius ferox</i> Species of spider

Amaurobius ferox, sometimes known as the black lace-weaver, is a common nocturnal spider belonging to the family Amaurobiidae and genus Amaurobius. Its genus includes three subsocial species, A. fenestralis, A. similis and A. ferox, all three of which have highly developed subsocial organizations.

<i>Gargaphia solani</i> Species of true bug

Gargaphia solani is a subsocial species of lace bug commonly known as the eggplant lace bug. The species was described by Heidemann in 1914 after it aroused attention a year earlier in the United States as an eggplant pest around Norfolk, Virginia. Fink found that the species became an agricultural pest when eggplant is planted on a large scale.

<i>Leptodactylus fallax</i> Species of amphibian

Leptodactylus fallax, commonly known as the mountain chicken or giant ditch frog, is a critically endangered species of frog that is native to the Caribbean islands of Dominica and Montserrat. The population declined by at least 80% from 1995 to 2004, with further significant declines later. A tiny wild population remains on Dominica where there are efforts to preserve it, but few or none survive in the wild on Montserrat and its survival now relies on a captive breeding project involving several zoos. The initial decline was linked to hunting for human consumption, along with habitat loss and natural disasters, but the most serious threat now appears to be the fungal disease chytridiomycosis, which was the primary cause of the most recent rapid decline. On Montserrat it is known as the mountain chicken, while on Dominica it is known as the crapaud.

Filial cannibalism occurs when an adult individual of a species consumes all or part of the young of its own species or immediate offspring. Filial cannibalism occurs in many species ranging from mammals to insects, and is especially prevalent in various species of fish. The exact evolutionary purpose of the practice in those species is unclear and debated among zoologists, though there is consensus that it may have, or may have had at some point in species' evolutionary history, certain evolutionary and ecological implications.

<i>Pisaurina mira</i> Species of spider

Pisaurina mira, also known as the American nursery web spider, is a species of spider in the family Pisauridae. They are often mistaken for wolf spiders (Lycosidae) due to their physical resemblance. P. mira is distinguished by its unique eye arrangement of two rows. 

<span class="mw-page-title-main">Matriphagy</span>

Matriphagy is the consumption of the mother by her offspring. The behavior generally takes place within the first few weeks of life and has been documented in some species of insects, nematode worms, pseudoscorpions, and other arachnids as well as in caecilian amphibians.

<i>Ceratina calcarata</i> Species of bee

Ceratina calcarata, the spurred ceratina, is a species of small carpenter bee in the family Apidae. It is found in eastern North America. This species ranges from Georgia, USA north to Ontario, Canada and east to Nova Scotia, Canada. This bee is a common generalist, native pollinator, it pollinates plants like watermelon and cucumber very effectively. C. calcarata adds to the productivity of a wide range of ecological and agricultural systems due to its wide range and abundance. This small bee is becoming a model organism in the scientific research of social evolution. C. calcarata is the first subsocial bee species to have its genome published, allowing researchers to investigate the evolutionary origins of social behaviour.

<i>Pardosa agrestis</i> Species of spider

Pardosa agrestis is a non-web-building spider in the family Lycosidae, commonly known as wolf spiders.

<i>Pardosa pseudoannulata</i> Species of arachnid

Pardosa pseudoannulata, a member of a group of species referred to as wolf-spiders, is a non-web-building spider belonging to the family Lycosidae. P. pseudoannulata are wandering spiders that track and ambush prey and display sexual cannibalism. They are commonly encountered in farmlands across China and other East Asian countries. Their venom has properties that helps it function as an effective insecticide, and it is, therefore, a crucial pesticide control agent.

<i>Toxeus magnus</i> Species of spider

Toxeus magnus is a species of jumping spider of the genus Toxeus. It is endemic to Taiwan and Southeast Asia. The species was originally classified as a part of the genus Myrmarachne in 1933 by Saitō in his work Notes on the spiders from Formosa, but it was later reclassified as Toxeus by the Polish arachnologist Jerzy Prószyński in November 2016. The species is notable for being a non-mammalian animal that nurses its offspring through a form of lactation.

References

  1. Ento, K; Araya, K; Kudo, S (2008). "Trophic egg provisioning in a passalid beetle (Coleoptera)". European Journal of Entomology. 105: 99–104. doi: 10.14411/eje.2008.014 .
  2. Koedam, D; Velthausz, P H; v d Krift, T; Dohmen, M R; Sommeijer, M J (2008). "Morphology of reproductive and trophic eggs and their controlled release by workers in Trigona (Tetragonisca) angustula llliger (Apidae, Meliponinae)". Physiological Entomology. 21 (4): 289–296. doi:10.1111/j.1365-3032.1996.tb00867.x. S2CID   85000098.
  3. 1 2 Perry, J; Roitberg, B D (2006). "Trophic egg laying: hypotheses and tests". Oikos . 112 (3): 706–714. doi:10.1111/j.0030-1299.2006.14498.x.
  4. 1 2 Kudo, S; Nakahira, T (2005). "Trophic-egg production in a subsocial bug: adaptive plasticity in response to resource conditions". Oikos . 111 (3): 459–464. doi:10.1111/j.1600-0706.2005.14173.x.
  5. Baba, N; Hironaka, M; Hosokawa, T; Mukai, H; Nomakuchi, S; Ueno, T (2011). "Trophic eggs compensate for poor offspring feeding capacity in a subsocial burrower bug". Biology Letters . 7 (2): 194–196. doi:10.1098/rsbl.2010.0707. PMC   3061161 . PMID   20880861.
  6. Kudo, S; Nakahira, T (2004). "Effects of trophic-eggs on offspring performance and rivalry in a sub-social bug". Oikos . 107: 28–35. doi:10.1111/j.0030-1299.2004.13169.x.
  7. Won Kim, K; Roland, C (2000). "Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value". Behavioural Processes. 50 (1): 31–42. doi:10.1016/S0376-6357(00)00091-7. PMID   10925034. S2CID   35326128.
  8. Peters, John M.; Queller, David; Imperatriz-Fonseca, Vera L.; Roubik, David W.; Strassmann, Joan (1999). "Mate Number, kin selection and social conflicts in stingless bees and honeybees". Proceedings of the Royal Society B: Biological Sciences. 266 (1417): 379–384. doi:10.1098/rspb.1999.0648. PMC   1689682 .
  9. Dietemann, V; Peeters, C (2000). "Queen influence on the shift from trophic to reproductive eggs laid by workers of the ponerine ant Pachycondyla apicalis". Insectes Sociaux . 47 (3): 223–228. doi:10.1007/PL00001707. S2CID   24411391.
  10. Won Kim, K; Roland, C (2000). "Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value". Behavioural Processes. 50 (1): 31–42. doi:10.1016/S0376-6357(00)00091-7. PMID   10925034. S2CID   35326128.
  11. Kitching, R L (2000). Food Webs and Container Habitats: The Natural History and Ecology of Phytotelmata. Cambridge University Press. pp. 55–56. ISBN   9781139428392.
  12. Gibson, R; Buley, K (2004). "Maternal care and obligatory oophagy in Leptodactylus fallax: A new reproductive mode in frogs". Copeia. 2004 (1): 128–135. doi:10.1643/CE-02-091R2. S2CID   6962809.
  13. Hoar, W S; Randall, D J (1988). The Physiology of Developing Fish: Viviparity and posthatching juveniles. Academic Press. pp. 43–71.

Further reading