It has been suggested that Pregnancy over age 50 be merged into this article. (Discuss) Proposed since November 2024. |
Advanced maternal age, in a broad sense, is the instance of a woman being of an older age at a stage of reproduction, although there are various definitions of specific age and stage of reproduction. [1] The variability in definitions is in part explained by the effects of increasing age occurring as a continuum rather than as a threshold effect. [1]
Average age at first childbirth has been increasing, especially in OECD countries, among which the highest average age is 32.6 years (South Korea) followed by 32.1 years (Ireland and Spain). [2] In a number of European countries (Spain), the mean age of women at first childbirth has crossed the 30 year threshold. [3] This process is not restricted to Europe. Asia, Japan and the United States are all seeing average age at first birth on the rise, and increasingly the process is spreading to countries in the developing world such as China, Turkey and Iran. In the U.S., the average age of first childbirth was 26.9 in 2018. [4]
Advanced maternal age is associated with adverse reproductive effects including increased risk of infertility, [5] and chromosomal abnormalities in children. [6] The corresponding paternal age effect is less pronounced. [7] [8]
Having children later was not exceptional in the past, when families were larger and women often continued bearing children until the end of their reproductive age. What is so radical about this recent transformation is that it is the age at which women give birth to their first child, which is becoming comparatively high, leaving an ever more constricted window of biological opportunity for second and subsequent children, should they be desired. Unsurprisingly, high first-birth ages and high rates of birth postponement are associated with the arrival of low, and lowest-low fertility. [9]
This association has now become especially clear, since the postponement of first births in a number of countries has now continued unabated for more than three decades and has become one of the most prominent characteristics of fertility patterns in developed societies. A variety of authors (in particular, Lesthaeghe) have argued that fertility postponement constitutes the "hallmark" of what has become known as the "second demographic transition". [ citation needed ]
Others have proposed that the postponement process itself constitutes a separate "third transition". [10] On this latter view, modern developed societies exhibit a kind of dual fertility pattern, with the majority of births being concentrated either among very young or increasingly older mothers. This is sometimes known as the "rectangularisation" of fertility patterns.
In the US, the average age at which women bore their first child advanced from 21.4 years old in 1970 [11] to 26.9 in 2018. [4]
The German Federal Institute for Population Research claimed in 2015 the percentage for women with an age of at least 35 giving birth to a child was 25.9%. This figure rose from 7.6% in 1981. [12]
There are many factors that may influence childbearing age in women, although they are mostly correlations without certain causations. For instance, older maternal age at first childbirth is associated with higher educational attainment and income. [13]
Two studies show that generous parental leave allowances in Britain encourage young motherhood and that parental-leave allowance reduces postponement in Sweden. [14]
A woman's fertility peaks lasts during the twenties and first half of thirties, after which it starts to decline, with advanced maternal age causing an increased risk of female infertility.
According to Henri Leridon, PhD, an epidemiologist with the French Institute of Health and Medical Research, of women trying to get pregnant, without using fertility drugs or in vitro fertilization: [5]
A woman's risk of having a baby with chromosomal abnormalities increases with her age. Down syndrome is the most common chromosomal birth defect, and a woman's risk of having a baby with Down syndrome is: [16] [6]
Age | Risk |
---|---|
20 | 1/ 2 000 |
24 | 1/ 1 300 |
25 | 1/ 1 200 |
29 | 1/ 950 |
30 | 1/ 900 |
Age | Risk |
---|---|
34 | 1/ 450 |
35 | 1/ 350 |
39 | 1/150 |
40 | 1/ 100 |
Age | Risk |
---|---|
44 | 1/ 40 |
45 | 1/ 30 |
49 | 1/ 10 |
Advanced maternal age is associated with adverse outcomes in the perinatal period, which may be caused by detrimental effects on decidual and placental development. [17]
The risk of the mother dying before the child becomes an adult increases by more advanced maternal age, such as can be demonstrated by the following data from France in 2007: [18]
Maternal age at childbirth (years) | 20 | 25 | 30 | 35 | 40 | 45 |
---|---|---|---|---|---|---|
Risk of mother not surviving to the child's 18th birthday (in %) [18] | 0.6% | 1.0% | 1.6% | 2.6% | 3.8% | 5.5% |
The above table is not to be confused with maternal mortality.
Advanced maternal age continues to be associated with a range of adverse pregnancy outcomes including low birth weight, pre-term birth, stillbirth, unexplained fetal death, and increased rates of Caesarean section. However, over time, improvements in (and improvements in access to) medical services and social resources have decreased the negative association between older maternal age and low birth weight. [19]
According to a meta analysis from 2017 of 63 cohort studies and 12 case control studies, advanced maternal age(≥35 years) increased the risk of stillbirth (OR 1.75, 95%CI 1.62 to 1.89). It also increased the risk for FGR (fetal growth restriction) (OR 1.23; 95%CI 1.01–1.52). It is suggested that the rise in the risk could be due to conditions related to placental pathology/dysfunction. [20]
On the other hand, advanced maternal age is associated with a more stable family environment, higher socio-economic position, higher income and better living conditions, as well as better parenting practices [18] (including better disciplinary methods [21] ). A qualitative study on couples in the United States who used in-vitro fertilization to conceive their first child when the woman was aged 40 or older at the time of delivery found that 72% of the women and 57% of the men believed that they had enhanced emotional preparedness for parenting which benefitted both their children and themselves. [22] In quantitative studies, mother's older age at first birth has been associated with increases in children's psychiatric health, [23] language skills, [23] cognitive ability, [24] and fewer social and emotional difficulties. [21] Further, a study in the United Kingdom showed that older maternal age at first birth was associated with fewer hospital admissions and fewer unintentional injuries for children up to age 5 and a greater likelihood of having had all of their immunizations by 9 months of age – all outcomes used as indicators of child wellbeing in reports from the World Health Organisation. [25]
Kalberer et al. [26] have shown that despite the older maternal age at birth of the first child, the time span between the birth of the first and the second child (the interpregnancy interval) decreased over the last decades. If purely biological factors were at work, it could be argued that interpregnancy interval should have increased, as fertility declines with age, which would make it harder for the woman to get a second child after postponed birth of the first one. This not being the case shows that sociologic factors (see above) prime over biological factors in determining interpregnancy interval.
With technology developments cases of post-menopausal pregnancies have occurred, and there are several known cases of older women carrying a pregnancy to term, usually with in vitro fertilization of a donor egg. A 61-year-old Brazilian woman, aided by the implantation of a donor egg, gave birth to twins in October 2012. [27] [28]
As women age, they experience a decline in reproductive performance leading to menopause. [29] This decline is tied to a decline in the number of ovarian follicles. Although about 1 million oocytes are present at birth in the human ovary, only about 500 of them (about 0.05%) ovulate, and the rest do not (ovarian follicle atresia). The decline in ovarian reserve appears to occur at a constantly increasing rate with age, [30] and leads to nearly complete exhaustion of the reserve by about age 51. As ovarian reserve and fertility decline with age, there is also a parallel increase in pregnancy failure and meiotic errors resulting in chromosomally abnormal conceptions.
Titus et al. [31] have proposed an explanation for the decline in ovarian reserve with age. They showed that as women age, double-strand breaks accumulate in the DNA of their primordial follicles. Primordial follicles are immature primary oocytes surrounded by a single layer of granulosa cells. An enzyme system is present in oocytes that normally accurately repairs DNA double-strand breaks. This repair system is referred to as homologous recombinational repair, and it is especially active during meiosis. Meiosis is the general process by which germ cells are formed in eukaryotes, and it appears to be an adaptation for efficiently removing damages in germ line DNA by homologous recombinational repair (see Origin and function of meiosis). Human primary oocytes are present at an intermediate stage of meiosis, that is prophase I (see Oogenesis). Titus et al. [31] also showed that expression of four key DNA repair genes that are necessary for homologous recombinational repair ( BRCA1 , MRE11 , Rad51 and ATM ) decline in oocytes with age. This age-related decline in ability to repair double-strand damages can account for the accumulation of these damages, which then likely contributes to the decline in ovarian reserve.
Women with an inherited mutation in the DNA repair gene BRCA1 undergo menopause prematurely, [32] suggesting that naturally occurring DNA damages in oocytes are repaired less efficiently in these women, and this inefficiency leads to early reproductive failure. Genomic data from about 70,000 women were analyzed to identify protein-coding variation associated with age at natural menopause. [33] Pathway analyses identified a major association with DNA damage response genes, particularly those expressed during meiosis and including a common coding variant in the BRCA1 gene.
The ovary is a gonad in the female reproductive system that produces ova; when released, an ovum travels through the fallopian tube/oviduct into the uterus. There is an ovary on the left and the right side of the body. The ovaries are endocrine glands, secreting various hormones that play a role in the menstrual cycle and fertility. The ovary progresses through many stages beginning in the prenatal period through menopause.
In vitro fertilisation (IVF) is a process of fertilisation in which an egg is combined with sperm in vitro. The process involves monitoring and stimulating a woman's ovulatory process, then removing an ovum or ova from her ovaries and enabling a man's sperm to fertilise them in a culture medium in a laboratory. After a fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.
Infertility is the inability of a couple to reproduce by natural means. It is usually not the natural state of a healthy adult. Exceptions include children who have not undergone puberty, which is the body's start of reproductive capacity. It is also a normal state in women after menopause.
Oogenesis or ovogenesis is the differentiation of the ovum into a cell competent to further develop when fertilized. It is developed from the primary oocyte by maturation. Oogenesis is initiated in the embryonic stage.
Assisted reproductive technology (ART) includes medical procedures used primarily to address infertility. This subject involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), cryopreservation of gametes or embryos, and/or the use of fertility medication. When used to address infertility, ART may also be referred to as fertility treatment. ART mainly belongs to the field of reproductive endocrinology and infertility. Some forms of ART may be used with regard to fertile couples for genetic purpose. ART may also be used in surrogacy arrangements, although not all surrogacy arrangements involve ART. The existence of sterility will not always require ART to be the first option to consider, as there are occasions when its cause is a mild disorder that can be solved with more conventional treatments or with behaviors based on promoting health and reproductive habits.
In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains an immature oocyte. Folliculogenesis describes the progression of a number of small primordial follicles into large preovulatory follicles that occurs in part during the menstrual cycle.
Ovarian reserve is a term that is used to determine the capacity of the ovary to provide egg cells that are capable of fertilization resulting in a healthy and successful pregnancy. With advanced maternal age, the number of egg cell that can be successfully recruited for a possible pregnancy declines, constituting a major factor in the inverse correlation between age and female fertility.
Female infertility refers to infertility in women. It affects an estimated 48 million women, with the highest prevalence of infertility affecting women in South Asia, Sub-Saharan Africa, North Africa/Middle East, and Central/Eastern Europe and Central Asia. Infertility is caused by many sources, including nutrition, diseases, and other malformations of the uterus. Infertility affects women from around the world, and the cultural and social stigma surrounding it varies.
Primary ovarian insufficiency (POI), also called premature ovarian insufficiency and premature ovarian failure, is the partial or total loss of reproductive and hormonal function of the ovaries before age 40 because of follicular dysfunction or early loss of eggs. POI can be seen as part of a continuum of changes leading to menopause that differ from age-appropriate menopause in the age of onset, degree of symptoms, and sporadic return to normal ovarian function. POI affects approximately 1 in 10,000 women under age 20, 1 in 1,000 women under age 30, and 1 in 100 of those under age 40. A medical triad for the diagnosis is amenorrhea, hypergonadotropism, and hypoestrogenism.
Oocyte cryopreservation is a procedure to preserve a woman's eggs (oocytes). This technique is often used to delay pregnancy. When pregnancy is desired, the eggs can be thawed, fertilized, and transferred to the uterus as embryos. Several studies have shown that most infertility problems are due to germ cell deterioration related to aging. The procedure's success rate varies depending on the woman's age, health, and genetic factors. The first human birth of oocyte cryopreservation was reported in 1986.
Controlled ovarian hyperstimulation is a technique used in assisted reproduction involving the use of fertility medications to induce ovulation by multiple ovarian follicles. These multiple follicles can be taken out by oocyte retrieval for use in in vitro fertilisation (IVF), or be given time to ovulate, resulting in superovulation which is the ovulation of a larger-than-normal number of eggs, generally in the sense of at least two. When ovulated follicles are fertilised in vivo, whether by natural or artificial insemination, there is a very high risk of a multiple pregnancy.
In vitro maturation (IVM) is the technique of letting the contents of ovarian follicles and the oocytes inside mature in vitro. It can be offered to women with infertility problems, combined with In Vitro Fertilization (IVF), offering women pregnancy without ovarian stimulation.
Poor ovarian reserve is a condition of low fertility characterized by 1): low numbers of remaining oocytes in the ovaries or 2) possibly impaired preantral oocyte development or recruitment. Recent research suggests that premature ovarian aging and premature ovarian failure may represent a continuum of premature ovarian senescence. It is usually accompanied by high FSH levels.
Fertility preservation is the effort to help cancer patients retain their fertility, or ability to procreate. Research into how cancer, ageing and other health conditions effect reproductive health and preservation options are growing. Specifically sparked in part by the increase in the survival rate of cancer patients.
Female fertility is affected by age and is a major fertility factor for women. A woman's fertility is in generally good quality from the late teens to early thirties, although it declines gradually over time. Around 35, fertility is noted to decline at a more rapid rate. At age 45, a woman starting to try to conceive will have no live birth in 50–80 percent of cases. Menopause, or the cessation of menstrual periods, generally occurs in the 40s and 50s and marks the cessation of fertility, although age-related infertility can occur before then. The relationship between age and female fertility is sometimes referred to as a woman's "biological clock."
Obesity is defined as an abnormal accumulation of body fat, usually 20% or more over an individual's ideal body weight. This is often described as a body mass index (BMI) over 30. However, BMI does not account for whether the excess weight is fat or muscle, and is not a measure of body composition. For most people, however, BMI is an indication used worldwide to estimate nutritional status. Obesity is usually the result of consuming more calories than the body needs and not expending that energy by doing exercise. There are genetic causes and hormonal disorders that cause people to gain significant amounts of weight but this is rare. People in the obese category are much more likely to suffer from fertility problems than people of normal healthy weight.
Human reproductive ecology is a subfield in evolutionary biology that is concerned with human reproductive processes and responses to ecological variables. It is based in the natural and social sciences, and is based on theory and models deriving from human and animal biology, evolutionary theory, and ecology. It is associated with fields such as evolutionary anthropology and seeks to explain human reproductive variation and adaptations. The theoretical orientation of reproductive ecology applies the theory of natural selection to reproductive behaviors, and has also been referred to as the evolutionary ecology of human reproduction.
Ovum quality is the measure of the ability of an oocyte to achieve successful fertilisation. The quality is determined by the maturity of the oocyte and the cells that it comprises, which are susceptible to various factors which impact quality and thus reproductive success. This is of significance as an embryo's development is more heavily reliant on the oocyte in comparison to the sperm.
Ovarian stem cells are oocytes formed in ovarian follicle before birth in female mammals. They do not form post-natally, and are depleted throughout reproductive life. In humans it is estimated that 500,000–1,000,000 primordial follicles are present at birth, decreasing rapidly with age until roughly age 51 when ovulation stops, resulting in menopause. The origin of these oocytes remains under discussion. The publication of a study in 2004 proposing germ cell renewal in adult mice sparked a debate on the possibility of stem cells in the postnatal ovary. An increasing number of studies suggest that stem cells exist within the mammalian ovary and can be manipulated in vitro to produce oocytes, but whether such ovarian stem cells have the potential to differentiate into oocytes remains uncertain.
Oocytes are immature egg cells that develop to maturity within a follicle in the ovary. Oocyte abnormalities can occur due to several factors, including premature ovarian insufficiency (POI), other maturation abnormalities, maternal ageing, and mitochondrial abnormalities.