Evolution of cells

Last updated

Evolution of cells refers to the evolutionary origin and subsequent evolutionary development of cells. Cells first emerged at least 3.8 billion years ago [1] [2] [3] approximately 750 million years after Earth was formed. [4]

Contents

The first cells

The initial development of the cell marked the passage from prebiotic chemistry to partitioned units resembling modern cells. The final transition to living entities that fulfill all the definitions of modern cells depended on the ability to evolve effectively by natural selection. This transition has been called the Darwinian transition.

If life is viewed from the point of view of replicator molecules, cells satisfy two fundamental conditions: protection from the outside environment and confinement of biochemical activity. The former condition is needed to keep complex molecules stable in a varying and sometimes aggressive environment; the latter is fundamental for the evolution of biocomplexity. If freely floating molecules that code for enzymes are not enclosed in cells, the enzymes will automatically benefit neighboring replicator molecules as well. Thus, the consequences of diffusion in non-partitioned lifeforms would result in "parasitism by default." Therefore, the selection pressure on replicator molecules will be lower, as the 'lucky' molecule that produces the better enzyme does not fully leverage its advantage over its close neighbors. In contrast, if the molecule is enclosed in a cell membrane, the enzymes coded will be available only to itself. That molecule will uniquely benefit from the enzymes it codes for, increasing individuality and thus accelerating natural selection.

Partitioning may have begun from cell-like spheroids formed by proteinoids, which are observed by heating amino acids with phosphoric acid as a catalyst. They bear much of the basic features provided by cell membranes. Proteinoid-based protocells enclosing RNA molecules could have been the first cellular life forms on Earth. [5]

Another possibility is that the shores of the ancient coastal waters may have been a suitable environment for the initial development of cells. Waves breaking on the shore create a delicate foam composed of bubbles. Shallow coastal waters also tend to be warmer, further concentrating the molecules through evaporation. While bubbles made mostly of water tend to burst quickly, oily bubbles are much more stable. The phospholipid, the primary material of cell membranes, is an example of a common oily compound prevalent in the prebiotic seas. [6]

Both of these options require the presence of massive amounts of chemicals and organic material in order to form cells. A large gathering of organic molecules most likely came from what scientists now call the prebiotic soup. The prebiotic soup refers to the collection of every organic compound that appeared on Earth after it was formed. This soup would have most likely contained the compounds necessary to form early cells. [7]

Phospholipids are composed of a hydrophilic head on one end and a hydrophobic tail on the other. They can come together to form a bilayer membrane. A lipid monolayer bubble can only contain oil and is not conducive to harboring water-soluble organic molecules. On the other hand, a lipid bilayer bubble can contain water and was a likely precursor to the modern cell membrane.[ citation needed ] If a protein was introduced that increased the integrity of its parent bubble, then that bubble had an advantage.[ citation needed ] Primitive reproduction may have occurred when the bubbles burst, releasing the results of the experiment into the surrounding medium. Once enough of the right compounds were released into the medium, the development of the first prokaryotes, eukaryotes, and multi-cellular organisms could be achieved. [8] [ citation needed ]

However, the first cell membrane could not have been composed of phospholipids due its low permeability, as ions would not able to pass through the membrane. Rather it is suggested they were composed of fatty acids, as they can freely exchange ions, allowing geochemically sustained proton gradients at alkaline hydrothermal vents that might lead to prebiotic chemical reactions via CO2 fixation. [9]

Community metabolism

The common ancestor of the now existing cellular lineages (eukaryotes, bacteria, and archaea) may have been a community of organisms that readily exchanged components and genes. It would have contained:

The eukaryotic cell seems to have evolved from a symbiotic community of prokaryotic cells. DNA-bearing organelles like mitochondria and chloroplasts are remnants of ancient symbiotic oxygen-breathing bacteria and cyanobacteria, respectively, where at least part of the rest of the cell may have been derived from an ancestral archaean prokaryote cell. The archean prokaryote cell concept is often termed as the endosymbiotic theory. There is still debate about whether organelles like the hydrogenosome predated the origin of mitochondria, or vice versa: see the hydrogen hypothesis for the origin of eukaryotic cells.

How the current lineages of microbes evolved from this postulated community is currently unsolved, but subject to intense research by biologists, stimulated by the great flow of new discoveries in genome science. [10]

Genetic code and the RNA world

Modern evidence suggests that early cellular evolution occurred in a biological realm radically distinct from modern biology. It is thought that in this ancient realm, the current genetic role of DNA was largely filled by RNA, and catalysis was also largely mediated by RNA (that is, by ribozyme counterparts of enzymes). This concept is known as the RNA world hypothesis.

According to this hypothesis, the ancient RNA world transitioned into the modern cellular world via the evolution of protein synthesis, followed by replacement of many cellular ribozyme catalysts by protein-based enzymes. Proteins are much more flexible in catalysis than RNA due to the existence of diverse amino acid side chains with distinct chemical characteristics. The RNA record in existing cells appears to preserve some 'molecular fossils' from this RNA world. These RNA fossils include the ribosome itself (in which RNA catalyzes peptide-bond formation), the modern ribozyme catalyst RNase P, and RNAs. [11] [12] [13] [14]

The nearly universal genetic code preserves some evidence for the RNA world. For instance, recent studies of transfer RNAs, the enzymes that charge them with amino acids (the first step in protein synthesis) and the way these components recognize and exploit the genetic code, have been used to suggest that the universal genetic code emerged before the evolution of the modern amino acid activation method for protein synthesis. [11] [12] [15] [16] [17] The first RNA polymers probably emerged prior to 4.17 Gya if life originated at freshwater environments similar to Darwin's warm little pond. [18]

Sexual reproduction

The evolution of sexual reproduction may be a primordial and fundamental characteristic of eukaryotes, including single cell eukaryotes. Based on a phylogenetic analysis, Dacks and Roger [19] proposed that facultative sex was present in the common ancestor of all eukaryotes. Hofstatter and Lehr [20] reviewed evidence supporting the hypothesis that all eukaryotes can be regarded as sexual, unless proven otherwise.

Sexual reproduction may have arisen in early protocells with RNA genomes (RNA world). [21] Initially, each protocell would likely have contained one RNA genome (rather than multiple) since this maximizes the growth rate. However, the occurrence of damages to the RNA which block RNA replication or interfere with ribozyme function would make it advantageous to fuse periodically with another protocell to restore reproductive ability. This early, simple form of genetic recovery is similar to that occurring in extant segmented single-stranded RNA viruses (see influenza A virus).

As duplex DNA became the predominant form of the genetic material, the mechanism of genetic recovery evolved into the more complex process of meiotic recombination, found today in most species. It thus appears likely that sexual reproduction arose early in the evolution of cells and has had a continuous evolutionary history.

Horizontal gene transfer

Horizontal gene transfer (HGT) is the movement of genetic information between different organisms of the same species mainly being bacteria. This is not the movement of genetic information between a parent and their offspring but by other factors. In contrast to how animals reproduce and evolve from sexual reproduction, bacteria evolve by sharing DNA with other bacteria or their environment.

There are three common mechanisms of transferring genetic material by HGT:

Once one of these mechanisms has occurred the bacteria will continue to multiply and grow resistance and evolve by natural selection. HGT is the main cause of the assimilation of certain genetic material and the passing down of antibiotic resistance genes (ARGs).

Canonical patterns

Although the evolutionary origins of the major lineages of modern cells are disputed, the primary distinctions between the three major lineages of cellular life (called domains) are firmly established.

In each of these three domains, DNA replication, transcription, and translation all display distinctive features. There are three versions of ribosomal RNAs, and generally three versions of each ribosomal protein, one for each domain of life. These three versions of the protein synthesis apparatus are called the canonical patterns, and the existence of these canonical patterns provides the basis for a definition of the three domains - Bacteria , Archaea , and Eukarya (or Eukaryota) - of currently existing cells. [22]

Using genomics to infer early lines of evolution

Instead of relying a single gene such as the small-subunit ribosomal RNA (SSU rRNA) gene to reconstruct early evolution, or a few genes, scientific effort has shifted to analyzing complete genome sequences. [23]

Evolutionary trees based only on SSU rRNA alone do not capture the events of early eukaryote evolution accurately, and the progenitors of the first nucleated cells are still uncertain. For instance, analysis of the complete genome of the eukaryote yeast shows that many of its genes are more closely related to bacterial genes than they are to archaea, and it is now clear that archaea were not the simple progenitors of the eukaryotes, in contradiction to earlier findings based on SSU rRNA and limited samples of other genes. [24]

One hypothesis is that the first nucleated cell arose from two distinctly different ancient prokaryotic (non-nucleated) species that had formed a symbiotic relationship with one another to carry out different aspects of metabolism. One partner of this symbiosis is proposed to be a bacterial cell, and the other an archaeal cell. It is postulated that this symbiotic partnership progressed via the cellular fusion of the partners to generate a chimeric or hybrid cell with a membrane bound internal structure that was the forerunner of the nucleus. The next stage in this scheme was transfer of both partner genomes into the nucleus and their fusion with one another. Several variations of this hypothesis for the origin of nucleated cells have been suggested. [25] Other biologists dispute this conception [10] and emphasize the community metabolism theme, the idea that early living communities would comprise many different entities to extant cells, and would have shared their genetic material more extensively than current microbes. [26]

Quotes

"The First Cell arose in the previously prebiotic world with the coming together of several entities that gave a single vesicle the unique chance to carry out three essential and quite different life processes. These were: (a) to copy informational macromolecules, (b) to carry out specific catalytic functions, and (c) to couple energy from the environment into usable chemical forms. These would foster subsequent cellular evolution and metabolism. Each of these three essential processes probably originated and was lost many times prior to The First Cell, but only when these three occurred together was life jump-started and Darwinian evolution of organisms began." (Koch and Silver, 2005) [27]

"The evolution of modern cells is arguably the most challenging and important problem the field of Biology has ever faced. In Darwin's day the problem could hardly be imagined. For much of the 20th century it was intractable. In any case, the problem lay buried in the catch-all rubric "origin of life"--where, because it is a biological not a (bio)chemical problem, it was effectively ignored. Scientific interest in cellular evolution started to pick up once the universal phylogenetic tree, the framework within which the problem had to be addressed, was determined. But it was not until microbial genomics arrived on the scene that biologists could actually do much about the problem of cellular evolution." (Carl Woese, 2002) [28]

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of many life forms

The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope. Cells emerged on Earth about 4 billion years ago. All cells are capable of replication, protein synthesis, and motility.

<span class="mw-page-title-main">RNA</span> Family of large biological molecules

Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself or by forming a template for the production of proteins. RNA and deoxyribonucleic acid (DNA) are nucleic acids. The nucleic acids constitute one of the four major macromolecules essential for all known forms of life. RNA is assembled as a chain of nucleotides. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

<span class="mw-page-title-main">RNA world</span> Hypothetical stage in the early evolutionary history of life on Earth

The RNA world is a hypothetical stage in the evolutionary history of life on Earth, in which self-replicating RNA molecules proliferated before the evolution of DNA and proteins. The term also refers to the hypothesis that posits the existence of this stage.

<span class="mw-page-title-main">Symbiogenesis</span> Evolutionary theory holding that eukaryotic organelles evolved through symbiosis with prokaryotes

Symbiogenesis is the leading evolutionary theory of the origin of eukaryotic cells from prokaryotic organisms. The theory holds that mitochondria, plastids such as chloroplasts, and possibly other organelles of eukaryotic cells are descended from formerly free-living prokaryotes taken one inside the other in endosymbiosis. Mitochondria appear to be phylogenetically related to Rickettsiales bacteria, while chloroplasts are thought to be related to cyanobacteria.

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, the evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

The iron–sulfur world hypothesis is a set of proposals for the origin of life and the early evolution of life advanced in a series of articles between 1988 and 1992 by Günter Wächtershäuser, a Munich patent lawyer with a degree in chemistry, who had been encouraged and supported by philosopher Karl R. Popper to publish his ideas. The hypothesis proposes that early life may have formed on the surface of iron sulfide minerals, hence the name. It was developed by retrodiction from extant biochemistry in conjunction with chemical experiments.

Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates. Although most viral mutations confer no benefit and often even prove deleterious to viruses, the rapid rate of viral mutation combined with natural selection allows viruses to quickly adapt to changes in their host environment. In addition, because viruses typically produce many copies in an infected host, mutated genes can be passed on to many offspring quickly. Although the chance of mutations and evolution can change depending on the type of virus, viruses overall have high chances for mutations.

<span class="mw-page-title-main">Last universal common ancestor</span> Most recent common ancestor of all current life on Earth

The last universal common ancestor (LUCA) is the hypothesized common ancestral cell from which the three domains of life, the Bacteria, the Archaea, and the Eukarya originated. It is suggested to have been a "cellular organism that had a lipid bilayer and used DNA, RNA, and protein". The LUCA has also been defined as "a hypothetical organism ancestral to all three domains". The LUCA is the point or stage at which the three domains of life diverged from preexisting forms of life. The nature of this point or stage of divergence remains a topic of research.

<span class="mw-page-title-main">Gene</span> Sequence of DNA or RNA that codes for an RNA or protein product

In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA, that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes.

<span class="mw-page-title-main">Biology</span> Science that studies life

Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary information encoded in genes, which can be transmitted to future generations. Another major theme is evolution, which explains the unity and diversity of life. Energy processing is also important to life as it allows organisms to move, grow, and reproduce. Finally, all organisms are able to regulate their own internal environments.

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

<span class="mw-page-title-main">Pre-cell</span> Hypothetical life before complete cells

The terms pre-cell (precell), proto-cell (protocell), etc. are frequently used to designate hypothetical ancestral entities precursing complete cells. The meanings of these terms vary with the different hypotheses for the early evolution of life and, accordingly, with the corresponding publications.

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism lacking a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

<span class="mw-page-title-main">Archaea</span> Domain of single-celled organisms

Archaea is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

A protocell is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose and how their progeny could diversify, thus enabling the accumulation of novel biological emergences over time. Although a functional protocell has not yet been achieved in a laboratory setting, the goal to understand the process appears well within reach.

<span class="mw-page-title-main">Abiogenesis</span> Life arising from non-living matter

In biology, abiogenesis or the origin of life is the natural process by which life has arisen from non-living matter, such as simple organic compounds. The prevailing scientific hypothesis is that the transition from non-living to living entities on Earth was not a single event, but a process of increasing complexity involving the formation of a habitable planet, the prebiotic synthesis of organic molecules, molecular self-replication, self-assembly, autocatalysis, and the emergence of cell membranes. Many proposals have been made for different stages of the process, but the transition from non-life to life has never been observed experimentally.

Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution, and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.

<span class="mw-page-title-main">Darwinian threshold</span> Period during the evolution of the first cells

Darwinian threshold or Darwinian transition is a term introduced by Carl Woese to describe a transition period during the evolution of the first cells when genetic transmission moves from a predominantly horizontal mode to a vertical mode. The process starts when the ancestors of the Last Universal Common Ancestor become refractory to horizontal gene transfer (HGT) and become individual entities with vertical heredity upon which natural selection is effective. After this transition, life is characterized by genealogies that have a modern tree-like phylogeny.

A scenario is a set of related concepts pertinent to the origin of life (abiogenesis), such as the iron-sulfur world. Many alternative abiogenesis scenarios have been proposed by scientists in a variety of fields from the 1950s onwards in an attempt to explain how the complex mechanisms of life could have come into existence. These include hypothesized ancient environments that might have been favourable for the origin of life, and possible biochemical mechanisms.

The first universal common ancestor (FUCA) is a proposed non-cellular entity that is the earliest ancestor of the last universal common ancestor (LUCA) and its descendants, including every modern cell. FUCA would also be the ancestor of ancient sister lineages of LUCA, none of which have modern descendants.

References

  1. Schopf, JW, Kudryavtsev, AB, Czaja, AD, and Tripathi, AB. (2007). Evidence of Archean life: Stromatolites and microfossils. Precambrian Research 158:141-155.
  2. Schopf, JW (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci 29;361(1470):869-85.
  3. Raven PH, Johnson GB (2002). Biology . McGraw-Hill Education. p.  68. ISBN   978-0-07-112261-0 . Retrieved 7 July 2013.
  4. Cooper GM (2000). "The Origin and Evolution of Cells". The Cell: A Molecular Approach (2nd ed.).
  5. Fox SW, Dose K (1972). Molecular evolution and the origin of life. San Francisco: W.H. Freeman. ISBN   978-0-7167-0163-7. OCLC   759538.
  6. "Big Picture". Big Picture. Archived from the original on 22 July 2015. Retrieved 1 October 2019.
  7. "The Prebiotic Soup". earthguide.ucsd.edu. Retrieved 1 October 2019.
  8. This theory is expanded upon in The Cell: Evolution of the First Organism by Joseph Panno
  9. Nunes Palmeira, Raquel; Colnaghi, Marco; Harrison, Stuart A.; Pomiankowski, Andrew; Lane, Nick (9 November 2022). "The limits of metabolic heredity in protocells". Proceedings of the Royal Society B: Biological Sciences. 289 (1986). doi:10.1098/rspb.2022.1469. ISSN   0962-8452. PMC   9653231 . PMID   36350219.
  10. 1 2 Kurland CG, Collins LJ, Penny D (May 2006). "Genomics and the irreducible nature of eukaryote cells". Science. 312 (5776): 1011–1014. Bibcode:2006Sci...312.1011K. doi:10.1126/science.1121674. PMID   16709776. S2CID   30768101.
  11. 1 2 Poole AM, Jeffares DC, Penny D (January 1998). "The path from the RNA world". Journal of Molecular Evolution. 46 (1): 1–17. Bibcode:1998JMolE..46....1P. doi:10.1007/PL00006275. PMID   9419221. S2CID   17968659.
  12. 1 2 Jeffares DC, Poole AM, Penny D (January 1998). "Relics from the RNA world". Journal of Molecular Evolution. 46 (1): 18–36. Bibcode:1998JMolE..46...18J. doi:10.1007/PL00006280. PMID   9419222. S2CID   2029318.
  13. Orgel LE (2004). "Prebiotic chemistry and the origin of the RNA world". Critical Reviews in Biochemistry and Molecular Biology. 39 (2): 99–123. CiteSeerX   10.1.1.537.7679 . doi:10.1080/10409230490460765. PMID   15217990.
  14. Benner SA, Ellington AD, Tauer A (September 1989). "Modern metabolism as a palimpsest of the RNA world". Proceedings of the National Academy of Sciences of the United States of America. 86 (18): 7054–7058. Bibcode:1989PNAS...86.7054B. doi: 10.1073/pnas.86.18.7054 . PMC   297992 . PMID   2476811.
  15. Hohn MJ, Park HS, O'Donoghue P, Schnitzbauer M, Söll D (November 2006). "Emergence of the universal genetic code imprinted in an RNA record". Proceedings of the National Academy of Sciences of the United States of America. 103 (48): 18095–18100. Bibcode:2006PNAS..10318095H. doi: 10.1073/pnas.0608762103 . PMC   1838712 . PMID   17110438.
  16. O'Donoghue P, Luthey-Schulten Z (December 2003). "On the evolution of structure in aminoacyl-tRNA synthetases". Microbiology and Molecular Biology Reviews. 67 (4): 550–573. doi:10.1128/MMBR.67.4.550-573.2003. PMC   309052 . PMID   14665676.
  17. Gesteland, RF et al. eds.(2006) The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA (2006) (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY,).
  18. Pearce BK, Pudritz RE, Semenov DA, Henning TK (October 2017). "Origin of the RNA world: The fate of nucleobases in warm little ponds". Proceedings of the National Academy of Sciences of the United States of America. 114 (43): 11327–11332. doi: 10.1073/pnas.1710339114 . PMC   5664528 . PMID   28973920.
  19. Dacks J, Roger AJ (June 1999). "The first sexual lineage and the relevance of facultative sex". Journal of Molecular Evolution. 48 (6): 779–783. Bibcode:1999JMolE..48..779D. doi:10.1007/PL00013156. PMID   10229582. S2CID 9441768
  20. Hofstatter PG, Lahr DJG. All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. Bioessays. 2019 Jun;41(6):e1800246. doi: 10.1002/bies.201800246. Epub 2019 May 14. PMID   31087693
  21. Bernstein H, Byerly HC, Hopf FA, Michod RE. Origin of sex. J Theor Biol. 1984 Oct 5;110(3):323-51. doi: 10.1016/s0022-5193(84)80178-2. PMID   6209512
  22. Olsen GJ, Woese CR (June 1997). "Archaeal genomics: an overview". Cell. 89 (7): 991–994. doi: 10.1016/S0092-8674(00)80284-6 . PMID   9215619. S2CID   7576095.
  23. Daubin V, Moran NA, Ochman H (August 2003). "Phylogenetics and the cohesion of bacterial genomes". Science. 301 (5634): 829–832. Bibcode:2003Sci...301..829D. doi:10.1126/science.1086568. PMID   12907801. S2CID   11268678.
  24. Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, et al. (September 2004). "A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes". Molecular Biology and Evolution. 21 (9): 1643–1660. doi: 10.1093/molbev/msh160 . PMID   15155797.
  25. Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, et al. (September 2004). "A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes". Molecular Biology and Evolution. 21 (9): 1643–1660. doi: 10.1093/molbev/msh160 . PMID   15155797.
  26. Woese CR (June 2002). "On the evolution of cells". Proceedings of the National Academy of Sciences of the United States of America. 99 (13): 8742–8747. Bibcode:2002PNAS...99.8742W. doi: 10.1073/pnas.132266999 . PMC   124369 . PMID   12077305.
  27. Koch AL, Silver S (2005). The first cell. Advances in Microbial Physiology. Vol. 50. pp. 227–59. doi:10.1016/S0065-2911(05)50006-7. ISBN   9780120277506. PMID   16221582.
  28. Woese CR (June 2002). "On the evolution of cells". Proceedings of the National Academy of Sciences of the United States of America. 99 (13): 8742–8747. Bibcode:2002PNAS...99.8742W. doi: 10.1073/pnas.132266999 . PMC   124369 . PMID   12077305.

This article incorporates material from the Citizendium article "Evolution of cells", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.

Further reading