Macroevolution

Last updated

Macroevolution usually means the evolution of large-scale structures and traits that go significantly beyond the intraspecific variation found in microevolution (including speciation). [1] [2] [3] In other words, macroevolution is the evolution of taxa above the species level (genera, families, orders, etc.). [4]

Contents

Macroevolution is often thought to require the evolution of completely new structures such as entirely new organs. However, fundamentally novel structures are not necessary for dramatic evolutionary change. For instance, the evolution of mammal diversity in the past 100 million years has not required any major innovation. [5] All of this diversity can be explained by modification of existing organs, such as the evolution of elephant tusks from canine teeth.

Origin and changing meaning of the term

Philiptschenko [4] distinguished between microevolution and macroevolution because he rejected natural selection in the sense of Darwin [6] as an explanation for larger evolutionary transitions that give rise to taxa above the species level in the Linnean taxonomy. Accordingly, he restricted Darwinian "microevolution" to evolutionary changes within the boundary of given species that may lead to different races or subspecies at the most. By contrast, he referred "macroevolution" to major evolutionary changes that correspond to taxonomic differences above the species level, which in his opinion would require evolutionary processes different from natural selection. An explanatory model for macroevolution in this sense was the "hopeful monster" concept of geneticist Richard Goldschmidt, who suggested saltational evolutionary changes either due to mutations that affect the rates of developmental processes [7] or due to alterations in the chromosomal pattern. [8] Particularly the latter idea was widely rejected by the modern synthesis, but the hopeful monster concept based on Evolutionary_developmental_biology (or evo-devo) explanations found a moderate revival in recent times. [9] [10] Occasionally such dramatic changes can lead to novel features that survive.

As an alternative to saltational evolution, Dobzhansky [11] suggested that the difference between macroevolution and microevolution reflects essentially a difference in time-scales, and that macroevolutionary changes were simply the sum of microevolutionary changes over geologic time. This view became broadly accepted, and accordingly, the term macroevolution has been used widely as a neutral label for the study of evolutionary changes that take place over a very large time-scale. [12]

Further, species selection [1] suggests that selection among species is a major evolutionary factor that is independent from and complementary to selection among organisms. Accordingly, the level of selection has become the conceptual basis of a third definition, which defines macroevolution as evolution through selection among interspecific variation. [3]

Macroevolutionary processes

Speciation vs macroevolution

Charles Darwin first discovered that speciation can be extrapolated so that species not only evolve into new species, but also into new genera, families and other groups of animals. In other words, macroevolution is reducible to microevolution through selection of traits over long periods of time. [13] In addition, some scholars have argued that selection at the species level is important as well. [14] The advent of genome sequencing enabled the discovery of gradual genetic changes both during speciation but also across higher taxa. For instance, the evolution of humans from ancestral primates or other mammals can be traced to numerous but individual mutations. [15]

Evolution of new organs and tissues

One of the main questions in evolutionary biology is how new structures evolve, such as new organs. As can be seen in vertebrate evolution, most "new" organs are actually not new—they are still modifications of previously existing organs. Examples are wings (modified limbs), feathers (modified reptile scales), [16] lungs (modified swim bladders, e.g. found in fish), [17] [18] or even the heart (a muscularized segment of a vein). [19]

The same concept applies to the evolution of "novel" tissues. Even fundamental tissues such as bone can evolve from combining existing proteins (collagen) with calcium phosphate (specifically, hydroxy-apatite). This probably happened when certain cells that make collagen also accumulated calcium phosphate to get a proto-bone cell. [20]

Molecular macroevolution

Microevolution is facilitated by mutations, the vast majority of which have no or very small effects on gene or protein function. For instance, the activity of an enzyme may be slightly changed or the stability of a protein slightly altered. However, occasionally mutations can dramatically change the structure and functions of protein. This may be called "molecular macroevolution".

The metabolic enzyme galactokinase can be converted to a transcription factor (in yeast) by just a 2 amino-acid insertion. PDB 2aj4 EBI.png
The metabolic enzyme galactokinase can be converted to a transcription factor (in yeast) by just a 2 amino-acid insertion.

Protein function. There are countless cases in which protein function is dramatically altered by mutations. For instance, a mutation in acetaldehyde dehydrogenase (EC:1.2.1.10) can change it to a 4-hydroxy-2-oxopentanoate pyruvate lyase (EC:4.1.3.39), i.e., a mutation that changes an enzyme from one to another EC class. [21] Another example is the conversion of a yeast galactokinase (Gal1) to a transcription factor (Gal3) which can be achieved by an insertion of only two amino acids. [22]

While some mutations may not change the molecular function of a protein significantly, their biological function may be dramatically changed. For instance, most brain receptors recognize specific neurotransmitters, but that specificity can easily be changed by mutations. This has been shown by acetylcholine receptors that can be changed to serotonin or glycine receptors which actually have very different functions. Their similar gene structure also indicates that they must have arisen from gene duplications. [23]

Protein structure. Although protein structures are highly conserved, sometimes one or a few mutations can dramatically change a protein. For instance, an IgG-binding, 4+ fold can be transformed into an albumin-binding, 3-α fold via a single amino-acid mutation. This example also shows that such a transition can happen with neither function nor native structure being completely lost. [24] In other words, even when multiple mutations are required to convert one protein or structure into another, the structure and function is at least partially retained in the intermediary sequences. Similarly, domains can be converted into other domains (and thus other functions). For instance, the structures of SH3 folds can evolve into OB folds which in turn can evolve into CLB folds. [25]

Examples

Stanley's rule

Macroevolution is driven by differences between species in origination and extinction rates. Remarkably, these two factors are generally positively correlated: taxa that have typically high diversification rates also have high extinction rates. This observation has been described first by Steven Stanley, who attributed it to a variety of ecological factors. [26] Yet, a positive correlation of origination and extinction rates is also a prediction of the Red Queen hypothesis, which postulates that evolutionary progress (increase in fitness) of any given species causes a decrease in fitness of other species, ultimately driving to extinction those species that do not adapt rapidly enough. [27] High rates of origination must therefore correlate with high rates of extinction. [3] Stanley's rule, which applies to almost all taxa and geologic ages, is therefore an indication for a dominant role of biotic interactions in macroevolution.

"Macromutations": Single mutations leading to dramatic change

202208 Fruit fly female adult from a overhead view.svg
Normal phenotype
202208 Fruit fly bithorax complex.svg
Bithorax phenotype
Mutations in the Ultrabithorax gene lead to a duplication of wings in fruit flies.

While the vast majority of mutations are inconsequential, some can have a dramatic effect on morphology or other features of an organism. One of the best studied cases of a single mutation that leads to massive structural change is the Ultrabithorax mutation in fruit flies. The mutation duplicates the wings of a fly to make it look like a dragonfly, a different order of insect.

Evolution of multicellularity

The evolution of multicellular organisms is one of the major breakthroughs in evolution. The first step of converting a unicellular organism into a metazoan (a multicellular organism) is to allow cells to attach to each other. This can be achieved by one or a few mutations. In fact, many bacteria form multicellular assemblies, e.g. cyanobacteria or myxobacteria. Another species of bacteria, Jeongeupia sacculi, form well-ordered sheets of cells, which ultimately develop into a bulbous structure. [28] [29] Similarly, unicellular yeast cells can become multicellular by a single mutation in the ACE2 gene, which causes the cells to form a branched multicellular form. [30]

Evolution of bat wings

The wings of bats have the same structural elements (bones) as any other five-fingered mammal (see periodicity in limb development). However, the finger bones in bats are dramatically elongated, so the question is how these bones became so long. It has been shown that certain growth factors such as bone morphogenetic proteins (specifically Bmp2) is over expressed so that it stimulates an elongation of certain bones. Genetic changes in the bat genome identified the changes that lead to this phenotype and it has been recapitulated in mice: when specific bat DNA is inserted in the mouse genome, recapitulating these mutations, the bones of mice grow longer. [31]

Limbloss in lizards and snakes

Limbloss in lizards can be observed in the genus Lerista which shows many intermediary steps with increasing loss of digits and toes. The species shown here, Lerista cinerea, has no digits and only 1 toe left. Vine-thicket Fine-lined Slider (Lerista cinerea).jpg
Limbloss in lizards can be observed in the genus Lerista which shows many intermediary steps with increasing loss of digits and toes. The species shown here, Lerista cinerea , has no digits and only 1 toe left.

Snakes evolved from lizards. Phylogenetic analysis shows that snakes are actually nested within the phylogenetic tree of lizards, demonstrating that they have a common ancestor. [32] This split happened about 180 million years ago and several intermediary fossils are known to document the origin. In fact, limbs have been lost in numerous clades of reptiles, and there are cases of recent limb loss. For instance, the skink genus Lerista has lost limbs in multiple cases, with all possible intermediary steps, that is, there are species which have fully developed limbs, shorter limbs with 5, 4, 3, 2, 1 or no toes at all. [33]

Human evolution

While human evolution from their primate ancestors did not require massive morphological changes, our brain has sufficiently changed to allow human consciousness and intelligence. While the latter involves relatively minor morphological changes it did result in dramatic changes to brain function. [34] Thus, macroevolution does not have to be morphological, it can also be functional.

Evolution of viviparity in lizards

The European Common Lizard (Zootoca vivipara) consists of populations that are egg-laying or live-bearing, demonstrating that this dramatic difference can even evolve within a species. Zootoca vivipara. 3epo.Post.jpg
The European Common Lizard ( Zootoca vivipara ) consists of populations that are egg-laying or live-bearing, demonstrating that this dramatic difference can even evolve within a species.

Most lizards are egg-laying and thus need an environment that is warm enough to incubate their eggs. However, some species have evolved viviparity, that is, they give birth to live young, as almost all mammals do. In several clades of lizards, egg-laying (oviparous) species have evolved into live-bearing ones, apparently with very little genetic change. For instance, a European common lizard, Zootoca vivipara, is viviparous throughout most of its range, but oviparous in the extreme southwest portion. [35] [36] That is, within a single species, a radical change in reproductive behavior has happened. Similar cases are known from South American lizards of the genus Liolaemus which have egg-laying species at lower altitudes, but closely related viviparous species at higher altitudes, suggesting that the switch from oviparous to viviparous reproduction does not require many genetic changes. [37]

Behavior: Activity pattern in mice

Most animals are either active at night or during the day. However, some species switched their activity pattern from day to night or vice versa. For instance, the African striped mouse ( Rhabdomys pumilio ), transitioned from the ancestrally nocturnal behavior of its close relatives to a diurnal one. Genome sequencing and transcriptomics revealed that this transition was achieved by modifying genes in the rod phototransduction pathway, among others. [38]

Research topics

Subjects studied within macroevolution include: [39]

See also

Related Research Articles

<span class="mw-page-title-main">Evolution</span> Change in the heritable characteristics of biological populations

Evolution is the change in the heritable characteristics of biological populations over successive generations. Evolution occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. The process of evolution has given rise to biodiversity at every level of biological organisation.

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

<span class="mw-page-title-main">Evolutionary developmental biology</span> Comparison of organism developmental processes

Evolutionary developmental biology is a field of biological research that compares the developmental processes of different organisms to infer how developmental processes evolved.

Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes. Major topics in molecular evolution concern the rates and impacts of single nucleotide changes, neutral evolution vs. natural selection, origins of new genes, the genetic nature of complex traits, the genetic basis of speciation, the evolution of development, and ways that evolutionary forces influence genomic and phenotypic changes.

<span class="mw-page-title-main">Neutral theory of molecular evolution</span>

The neutral theory of molecular evolution holds that most evolutionary changes occur at the molecular level, and most of the variation within and between species are due to random genetic drift of mutant alleles that are selectively neutral. The theory applies only for evolution at the molecular level, and is compatible with phenotypic evolution being shaped by natural selection as postulated by Charles Darwin.

Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">Evolutionary biology</span> Study of the processes that produced the diversity of life

Evolutionary biology is the subfield of biology that studies the evolutionary processes that produced the diversity of life on Earth. It is also defined as the study of the history of life forms on Earth. Evolution holds that all species are related and gradually change over generations. In a population, the genetic variations affect the phenotypes of an organism. These changes in the phenotypes will be an advantage to some organisms, which will then be passed onto their offspring. Some examples of evolution in species over many generations are the peppered moth and flightless birds. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics, and paleontology.

Experimental evolution is the use of laboratory experiments or controlled field manipulations to explore evolutionary dynamics. Evolution may be observed in the laboratory as individuals/populations adapt to new environmental conditions by natural selection.

Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.

Evidence of common descent of living organisms has been discovered by scientists researching in a variety of disciplines over many decades, demonstrating that all life on Earth comes from a single ancestor. This forms an important part of the evidence on which evolutionary theory rests, demonstrates that evolution does occur, and illustrates the processes that created Earth's biodiversity. It supports the modern evolutionary synthesis—the current scientific theory that explains how and why life changes over time. Evolutionary biologists document evidence of common descent, all the way back to the last universal common ancestor, by developing testable predictions, testing hypotheses, and constructing theories that illustrate and describe its causes.

<span class="mw-page-title-main">Conserved sequence</span> Similar DNA, RNA or protein sequences within genomes or among species

In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids or proteins across species, or within a genome, or between donor and receptor taxa. Conservation indicates that a sequence has been maintained by natural selection.

<span class="mw-page-title-main">Facilitated variation</span>

The theory of facilitated variation demonstrates how seemingly complex biological systems can arise through a limited number of regulatory genetic changes, through the differential re-use of pre-existing developmental components. The theory was presented in 2005 by Marc W. Kirschner and John C. Gerhart.

Many vertebrates are limbless, limb-reduced, or apodous, with a body plan consisting of a head and vertebral column, but no adjoining limbs such as legs or fins. Jawless fish are limbless but may have preceded the evolution of vertebrate limbs, whereas numerous reptile and amphibian lineages – and some eels and eel-like fish – independently lost their limbs. Larval amphibians, tadpoles, are also often limbless. No mammals or birds are limbless, but some feature partial limb-loss or limb reduction.

<span class="mw-page-title-main">Directed evolution</span> Protein engineering method

Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis, selection and amplification. It can be performed in vivo, or in vitro. Directed evolution is used both for protein engineering as an alternative to rationally designing modified proteins, as well as for experimental evolution studies of fundamental evolutionary principles in a controlled, laboratory environment.

In biology, co-adaptation is the process by which two or more species, genes or phenotypic traits undergo adaptation as a pair or group. This occurs when two or more interacting characteristics undergo natural selection together in response to the same selective pressure or when selective pressures alter one characteristic and consecutively alter the interactive characteristic. These interacting characteristics are only beneficial when together, sometimes leading to increased interdependence. Co-adaptation and coevolution, although similar in process, are not the same; co-adaptation refers to the interactions between two units, whereas co-evolution refers to their evolutionary history. Co-adaptation and its examples are often seen as evidence for co-evolution.

Neutral mutations are changes in DNA sequence that are neither beneficial nor detrimental to the ability of an organism to survive and reproduce. In population genetics, mutations in which natural selection does not affect the spread of the mutation in a species are termed neutral mutations. Neutral mutations that are inheritable and not linked to any genes under selection will be lost or will replace all other alleles of the gene. That loss or fixation of the gene proceeds based on random sampling known as genetic drift. A neutral mutation that is in linkage disequilibrium with other alleles that are under selection may proceed to loss or fixation via genetic hitchhiking and/or background selection.

The Red Queen's hypothesis is a hypothesis in evolutionary biology proposed in 1973, that species must constantly adapt, evolve, and proliferate in order to survive while pitted against ever-evolving opposing species. The hypothesis was intended to explain the constant (age-independent) extinction probability as observed in the paleontological record caused by co-evolution between competing species; however, it has also been suggested that the Red Queen hypothesis explains the advantage of sexual reproduction at the level of individuals, and the positive correlation between speciation and extinction rates in most higher taxa.

The rate of evolution is quantified as the speed of genetic or morphological change in a lineage over a period of time. The speed at which a molecular entity evolves is of considerable interest in evolutionary biology since determining the evolutionary rate is the first step in characterizing its evolution. Calculating rates of evolutionary change is also useful when studying phenotypic changes in phylogenetic comparative biology. In either case, it can be beneficial to consider and compare both genomic data and paleontological data, especially in regards to estimating the timing of divergence events and establishing geological time scales.

References

  1. 1 2 Stanley, S. M. (1 February 1975). "A theory of evolution above the species level". Proceedings of the National Academy of Sciences . 72 (2): 646–50. Bibcode:1975PNAS...72..646S. doi: 10.1073/pnas.72.2.646 . ISSN   0027-8424. PMC   432371 . PMID   1054846.
  2. Gould, Stephen Jay (2002). The structure of evolutionary theory. Cambridge, Mass.: Belknap Press of Harvard University Press. ISBN   0-674-00613-5. OCLC   47869352.
  3. 1 2 3 Hautmann, Michael (2020). "What is macroevolution?". Palaeontology . 63 (1): 1–11. Bibcode:2020Palgy..63....1H. doi: 10.1111/pala.12465 . ISSN   0031-0239.
  4. 1 2 Philiptschenko, J. (1927). Variabilität und Variation. Berlin: Borntraeger.
  5. Meredith, R. W.; Janecka, J. E.; Gatesy, J.; Ryder, O. A.; Fisher, C. A.; Teeling, E. C.; Goodbla, A.; Eizirik, E.; Simao, T. L. L.; Stadler, T.; Rabosky, D. L.; Honeycutt, R. L.; Flynn, J. J.; Ingram, C. M.; Steiner, C. (28 October 2011). "Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification". Science. 334 (6055): 521–524. Bibcode:2011Sci...334..521M. doi:10.1126/science.1211028. ISSN   0036-8075. PMID   21940861. S2CID   38120449.
  6. Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.
  7. Goldschmidt, R. (1933). "Some aspects of evolution". Science. 78 (2033): 539–547. Bibcode:1933Sci....78..539G. doi:10.1126/science.78.2033.539. PMID   17811930.
  8. Goldschmidt, R. (1940). The material basis of evolution. Yale University Press.
  9. Theißen, Günter (March 2009). "Saltational evolution: hopeful monsters are here to stay". Theory in Biosciences. 128 (1): 43–51. doi:10.1007/s12064-009-0058-z. ISSN   1431-7613. PMID   19224263. S2CID   4983539.
  10. Rieppel, Olivier (13 March 2017). Turtles as hopeful monsters : origins and evolution. Bloomington, Indiana. ISBN   978-0-253-02507-4. OCLC   962141060.{{cite book}}: CS1 maint: location missing publisher (link)
  11. Dobzhanski, T. (1937). Genetics and the origin of species. Columbia University Press.
  12. Dawkins, Richard, 1941- (1982). The extended phenotype : the gene as the unit of selection. Oxford [Oxfordshire]: Freeman. ISBN   0-7167-1358-6. OCLC   7652745.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  13. Greenwood, P. H. (1979). "Macroevolution - myth or reality ?". Biological Journal of the Linnean Society. 12 (4): 293–304. doi:10.1111/j.1095-8312.1979.tb00061.x.
  14. Grantham, T A (November 1995). "Hierarchical Approaches to Macroevolution: Recent Work on Species Selection and the "Effect Hypothesis"". Annual Review of Ecology and Systematics. 26 (1): 301–321. doi:10.1146/annurev.es.26.110195.001505. ISSN   0066-4162.
  15. Foley, Nicole M.; Mason, Victor C.; Harris, Andrew J.; Bredemeyer, Kevin R.; Damas, Joana; Lewin, Harris A.; Eizirik, Eduardo; Gatesy, John; Karlsson, Elinor K.; Lindblad-Toh, Kerstin; Zoonomia Consortium‡; Springer, Mark S.; Murphy, William J.; Andrews, Gregory; Armstrong, Joel C. (28 April 2023). "A genomic timescale for placental mammal evolution". Science. 380 (6643): eabl8189. doi:10.1126/science.abl8189. ISSN   0036-8075. PMC   10233747 . PMID   37104581.
  16. Wu, Ping; Yan, Jie; Lai, Yung-Chih; Ng, Chen Siang; Li, Ang; Jiang, Xueyuan; Elsey, Ruth M; Widelitz, Randall; Bajpai, Ruchi; Li, Wen-Hsiung; Chuong, Cheng-Ming (21 November 2017). "Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion". Molecular Biology and Evolution. 35 (2): 417–430. doi:10.1093/molbev/msx295. ISSN   0737-4038. PMC   5850302 . PMID   29177513.
  17. Brainerd, E. L. (1 December 1999). "New perspectives on the evolution of lung ventilation mechanisms in vertebrates". Experimental Biology Online. 4 (2): 1–28. doi:10.1007/s00898-999-0002-1. ISSN   1430-3418. S2CID   35368264.
  18. Hoffman, M.; Taylor, B. E.; Harris, M. B. (1 April 2016). "Evolution of lung breathing from a lungless primitive vertebrate". Respiratory Physiology & Neurobiology. Physiology of respiratory networks of non-mammalian vertebrates. 224: 11–16. doi:10.1016/j.resp.2015.09.016. ISSN   1569-9048. PMC   5138057 . PMID   26476056.
  19. Jensen, Bjarke; Wang, Tobias; Christoffels, Vincent M.; Moorman, Antoon F. M. (1 April 2013). "Evolution and development of the building plan of the vertebrate heart". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. 1833 (4): 783–794. doi: 10.1016/j.bbamcr.2012.10.004 . ISSN   0167-4889. PMID   23063530. S2CID   28787569.
  20. Wagner, Darja Obradovic; Aspenberg, Per (1 August 2011). "Where did bone come from?". Acta Orthopaedica. 82 (4): 393–398. doi:10.3109/17453674.2011.588861. ISSN   1745-3674. PMC   3237026 . PMID   21657973.
  21. Tyzack, Jonathan D; Furnham, Nicholas; Sillitoe, Ian; Orengo, Christine M; Thornton, Janet M (1 December 2017). "Understanding enzyme function evolution from a computational perspective". Current Opinion in Structural Biology. Protein–nucleic acid interactions • Catalysis and regulation. 47: 131–139. doi: 10.1016/j.sbi.2017.08.003 . ISSN   0959-440X. PMID   28892668.
  22. Platt, A.; Ross, H. C.; Hankin, S.; Reece, R. J. (28 March 2000). "The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase". Proceedings of the National Academy of Sciences of the United States of America. 97 (7): 3154–3159. Bibcode:2000PNAS...97.3154P. doi: 10.1073/pnas.97.7.3154 . ISSN   0027-8424. PMC   16208 . PMID   10737789.
  23. Uetz, Peter; Abdelatty, Fawzy; Villarroel, Alfredo; Rappold, Gudrun; Weiss, Birgit; Koenen, Michael (21 February 1994). "Organisation of the murine 5-HT 3 receptor gene and assignment tohuman chromosome 11". FEBS Letters. 339 (3): 302–306. doi: 10.1016/0014-5793(94)80435-4 . PMID   8112471. S2CID   28979681.
  24. Alexander, Patrick A.; He, Yanan; Chen, Yihong; Orban, John; Bryan, Philip N. (15 December 2009). "A minimal sequence code for switching protein structure and function". Proceedings of the National Academy of Sciences. 106 (50): 21149–21154. doi: 10.1073/pnas.0906408106 . ISSN   0027-8424. PMC   2779201 . PMID   19923431.
  25. Alvarez-Carreño, Claudia; Gupta, Rohan J.; Petrov, Anton S.; Williams, Loren Dean (27 December 2022). "Creative destruction: New protein folds from old". Proceedings of the National Academy of Sciences. 119 (52): e2207897119. Bibcode:2022PNAS..11907897A. doi:10.1073/pnas.2207897119. ISSN   0027-8424. PMC   9907106 . PMID   36534803. S2CID   254907939.
  26. Stanley, Steven M. (1979). Macroevolution, pattern and process. San Francisco: W.H. Freeman. ISBN   0-7167-1092-7. OCLC   5101557.
  27. Van Valen, L. (1973). "A new evolutionary law". Evolutionary Theory. 1: 1–30.
  28. Datta, Sayantan; Ratcliff, William C (11 October 2022). "Illuminating a new path to multicellularity". eLife. 11: e83296. doi: 10.7554/eLife.83296 . ISSN   2050-084X. PMC   9553208 . PMID   36217823.
  29. Mizuno, Kouhei; Maree, Mais; Nagamura, Toshihiko; Koga, Akihiro; Hirayama, Satoru; Furukawa, Soichi; Tanaka, Kenji; Morikawa, Kazuya (11 October 2022). Goldstein, Raymond E; Weigel, Detlef (eds.). "Novel multicellular prokaryote discovered next to an underground stream". eLife. 11: e71920. doi: 10.7554/eLife.71920 . ISSN   2050-084X. PMC   9555858 . PMID   36217817.
  30. Ratcliff, William C.; Fankhauser, Johnathon D.; Rogers, David W.; Greig, Duncan; Travisano, Michael (May 2015). "Origins of multicellular evolvability in snowflake yeast". Nature Communications. 6 (1): 6102. Bibcode:2015NatCo...6.6102R. doi:10.1038/ncomms7102. ISSN   2041-1723. PMC   4309424 . PMID   25600558.
  31. Sears, Karen E.; Behringer, Richard R.; Rasweiler, John J.; Niswander, Lee A. (25 April 2006). "Development of bat flight: Morphologic and molecular evolution of bat wing digits". Proceedings of the National Academy of Sciences. 103 (17): 6581–6586. Bibcode:2006PNAS..103.6581S. doi: 10.1073/pnas.0509716103 . ISSN   0027-8424. PMC   1458926 . PMID   16618938.
  32. Streicher, Jeffrey W.; Wiens, John J. (30 September 2017). "Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families". Biology Letters. 13 (9): 20170393. doi:10.1098/rsbl.2017.0393. PMC   5627172 . PMID   28904179.
  33. Skinner, Adam; Lee, Michael SY; Hutchinson, Mark N (2008). "Rapid and repeated limb loss in a clade of scincid lizards". BMC Evolutionary Biology. 8 (1): 310. doi: 10.1186/1471-2148-8-310 . ISSN   1471-2148. PMC   2596130 . PMID   19014443.
  34. Serrelli, Emanuele; Gontier, Nathalie (2015). Macroevolution: explanation, interpretation and evidence. Cham. ISBN   978-3-319-15045-1. OCLC   903489046.{{cite book}}: CS1 maint: location missing publisher (link)
  35. Heulin, Benoît (1 May 1990). "Étude comparative de la membrane coquillère chez les souches ovipare et vivipare du lézard Lacerta vivipara". Canadian Journal of Zoology. 68 (5): 1015–1019. doi:10.1139/z90-147. ISSN   0008-4301.
  36. Arrayago, Maria-Jesus; Bea, Antonio; Heulin, Benoit (1996). "Hybridization Experiment between Oviparous and Viviparous Strains of Lacerta vivipara: A New Insight into the Evolution of Viviparity in Reptiles". Herpetologica. 52 (3): 333–342. ISSN   0018-0831. JSTOR   3892653.
  37. Ii, James A. Schulte; Macey, J. Robert; Espinoza, Robert E.; Larson, Allan (January 2000). "Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal". Biological Journal of the Linnean Society. 69 (1): 75–102. doi: 10.1111/j.1095-8312.2000.tb01670.x .
  38. Richardson, Rose; Feigin, Charles Y.; Bano-Otalora, Beatriz; Johnson, Matthew R.; Allen, Annette E.; Park, Jongbeom; McDowell, Richard J.; Mereby, Sarah A.; Lin, I-Hsuan; Lucas, Robert J.; Mallarino, Ricardo (August 2023). "The genomic basis of temporal niche evolution in a diurnal rodent". Current Biology. 33 (15): 3289–3298.e6. doi:10.1016/j.cub.2023.06.068. ISSN   0960-9822. PMC  10529858. PMID   37480852.
  39. Grinin, L., Markov, A. V., Korotayev, A. Aromorphoses in Biological and Social Evolution: Some General Rules for Biological and Social Forms of Macroevolution / Social evolution & History, vol.8, num. 2, 2009

Further reading