Last updated

The initial stages of human embryogenesis HumanEmbryogenesis.svg
The initial stages of human embryogenesis
Parts of a human embryo Human embryo 8 weeks 2.JPG
Parts of a human embryo

Ontogeny (also ontogenesis) is the origination and development of an organism (both physical and psychological, e.g., moral development [1] ), usually from the time of fertilization of the egg to adult. The term can also be used to refer to the study of the entirety of an organism's lifespan.


Ontogeny is the developmental history of an organism within its own lifetime, as distinct from phylogeny, which refers to the evolutionary history of a species. In practice, writers on evolution often speak of species as "developing" traits or characteristics. This can be misleading. While developmental (i.e., ontogenetic) processes can influence subsequent evolutionary (e.g., phylogenetic) processes [2] (see evolutionary developmental biology and recapitulation theory), individual organisms develop (ontogeny), while species evolve (phylogeny).

Ontogeny, embryology and developmental biology are closely related studies and those terms are sometimes used interchangeably. Aspects of ontogeny are morphogenesis, the development of form; tissue growth; and cellular differentiation. The term ontogeny has also been used in cell biology to describe the development of various cell types within an organism. [3]

Ontogeny is a useful field of study in many disciplines, including developmental biology, developmental psychology, developmental cognitive neuroscience, and developmental psychobiology.

Ontogeny is used in anthropology as "the process through which each of us embodies the history of our own making." [4]


The word ontogeny comes from the Greek ὄν , on (gen. ὄντος, ontos), i.e. "being; that which is", which is the present participle of the verb εἰμί, eimi, i.e. "to be, I am", and from the suffix -geny from the Greek -γένεια -geneia, which expresses the concept of "mode of production". [5]

Nature and nurture

A seminal 1963 paper by Niko Tinbergen named ontogeny as one of the four primary questions of biology, along with Huxley's three others: causation, survival value and evolution. [6] Tinbergen emphasized that the change of behavioral machinery during development was distinct from the change in behavior during development. "We can conclude that the thrush itself, i.e. its behavioral machinery, has changed only if the behavior change occurred while the environment was held constant...When we turn from description to causal analysis, and ask in what way the observed change in behavior machinery has been brought about, the natural first step is to try and distinguish between environmental influences and those within the animal...In ontogeny the conclusion that a certain change is internally controlled (is "innate") is reached by elimination. " (p. 424) Tinbergen was concerned that the elimination of environmental factors is difficult to establish, and the use of the word "innate" is often misleading.

Ontogenetic allometry

Most organisms undergo allometric changes in shape as they grow and mature, while others engage in metamorphosis. Even "reptiles" (non-avian sauropsids, e.g., crocodilians, turtles, snakes, [7] lizards [8] ), in which the offspring are often viewed as miniature adults, show a variety of ontogenetic changes in morphology and physiology. [9]

Anthropological application

Comparing ourselves to others is something humans do all the time. "In doing so we are acknowledging not so much our sameness to others or our difference, but rather the commonality that resides in our difference. In other words, because each one of us is at once remarkably similar to, and remarkably different from, all other humans, it makes little sense to think of comparison in terms of a list of absolute similarities and a list of absolute differences. Rather, in respect of all other humans, we find similarities in the ways we are different from one another and differences in the ways we are the same. That we are able to do this is a function of the genuinely historical process that is human ontogeny". [4]

See also

Notes and references

  1. Tomasello, Michael (27 September 2018). "The Normative Turn in Early Moral Development". Human Development. 61 (4–5): 248–263. doi:10.1159/000492802. S2CID   149612818.
  2. Gould, S.J. (1977). Ontogeny and Phylogeny. Cambridge, Massachusetts: The Belknap Press of Harvard University Press
  3. Thiery, Jean Paul (1 December 2003). "Epithelial–mesenchymal transitions in development and pathologies". Current Opinion in Cell Biology. 15 (6): 740–746. doi:10.1016/j.ceb.2003.10.006. PMID   14644200.
  4. 1 2 Toren, Christina. "Comparison and ontogeny." Anthropology, by comparison (2002): 187.
  5. See -geny in the Oxford English Dictionary, second edition, 1989; online version March 2011, Retrieved 9 May 2011. Earlier version first published in New English Dictionary, 1898.
  6. Niko Tinbergen (1963). "On aims and methods of ethology" (PDF). Zeitschrift für Tierpsychologie. 20 (4): 410–433. doi:10.1111/j.1439-0310.1963.tb01161.x. See page 411.
  7. Pough, F. H. (1978). "Ontogenetic changes in endurance in water snakes (Natrix sipedon): Physiological correlates and ecological consequences". Copeia. 1978 (1): 69–75. doi:10.2307/1443823. JSTOR   1443823.
  8. Garland Jr, T. (1985). "Ontogenetic and individual variation in size, shape and speed in the Australian agamid lizard Amphibolurus nuchalis". Journal of Zoology. 207 (3): 425–439. CiteSeerX . doi:10.1111/j.1469-7998.1985.tb04941.x.
  9. Garland Jr., T.; Else, P. L. (1987). "Seasonal, sexual, and individual variation in endurance and activity metabolism in lizards". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 252 (3): R439–R449. doi:10.1152/ajpregu.1987.252.3.r439. PMID   3826408. S2CID   15804764.

Related Research Articles

Outline of biology Hierarchical Wycklieffe Osano

Biology – The natural science that involves the study of life and living organisms, including their structure, function, growth, origin, evolution, distribution, and taxonomy.

Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.

Ernst Haeckel German biologist, philosopher, physician, and artist

Ernst Heinrich Philipp August Haeckel was a German zoologist, naturalist, eugenicist, philosopher, physician, professor, marine biologist, and artist who discovered, described and named thousands of new species, mapped a genealogical tree relating all life forms, and coined many terms in biology, including ecology, phylum, phylogeny, and Protista. Haeckel promoted and popularised Charles Darwin's work in Germany and developed the influential but no longer widely held recapitulation theory claiming that an individual organism's biological development, or ontogeny, parallels and summarises its species' evolutionary development, or phylogeny.

Embryo drawing

Embryo drawing is the illustration of embryos in their developmental sequence. In plants and animals, an embryo develops from a zygote, the single cell that results when an egg and sperm fuse during fertilization. In animals, the zygote divides repeatedly to form a ball of cells, which then forms a set of tissue layers that migrate and fold to form an early embryo. Images of embryos provide a means of comparing embryos of different ages, and species. To this day, embryo drawings are made in undergraduate developmental biology lessons.

Recapitulation theory

The theory of recapitulation, also called the biogenetic law or embryological parallelism—often expressed using Ernst Haeckel's phrase "ontogeny recapitulates phylogeny"—is a historical hypothesis that the development of the embryo of an animal, from fertilization to gestation or hatching (ontogeny), goes through stages resembling or representing successive adult stages in the evolution of the animal's remote ancestors (phylogeny). It was formulated in the 1820s by Étienne Serres based on the work of Johann Friedrich Meckel, after whom it is also known as Meckel–Serres law.

Zoology is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷον, zōion, i.e. "animal" and λόγος, logos, i.e. "knowledge, study".

Evolutionary developmental biology Field of research that compares the developmental processes of different organisms to infer the ancestral relationships

Evolutionary developmental biology is a field of biological research that compares the developmental processes of different organisms to infer the ancestral relationships between them and how developmental processes evolved.

Nikolaas Tinbergen

Nikolaas "Niko" Tinbergen was a Dutch biologist and ornithologist who shared the 1973 Nobel Prize in Physiology or Medicine with Karl von Frisch and Konrad Lorenz for their discoveries concerning organization and elicitation of individual and social behavior patterns in animals. He is regarded as one of the founders of modern ethology, the study of animal behavior.

Heterochrony Evolutionary change in the rates or durations of developmental events, leading to structural changes

In evolutionary developmental biology, heterochrony is any genetically controlled difference in the timing or duration of a developmental process in an organism compared to its ancestors or other organisms. This leads to changes in the size, shape, characteristics and even presence of certain organs and features. It is contrasted with heterotopy, a change in spatial positioning of some process in the embryo, which can also create morphological innovation. Heterochrony can be divided into intraspecific heterochrony, variation within a species, and interspecific heterochrony, phylogenetic variation, i.e. variation of a descendant species with respect to an ancestral species.

Evolutionary neuroscience Study of the evolution of nervous systems

Evolutionary neuroscience is the scientific study of the evolution of nervous systems. Evolutionary neuroscientists investigate the evolution and natural history of nervous system structure, functions and emergent properties. The field draws on concepts and findings from both neuroscience and evolutionary biology. Historically, most empirical work has been in the area of comparative neuroanatomy, and modern studies often make use of phylogenetic comparative methods. Selective breeding and experimental evolution approaches are also being used more frequently.

Evolutionary developmental psychology (EDP) is a research paradigm that applies the basic principles of evolution by natural selection, to understand the development of human behavior and cognition. It involves the study of both the genetic and environmental mechanisms that underlie the development of social and cognitive competencies, as well as the epigenetic processes that adapt these competencies to local conditions.

<i>Ontogeny and Phylogeny</i> (book)

Ontogeny and Phylogeny is a 1977 book on evolution by Stephen Jay Gould, in which the author explores the relationship between embryonic development (ontogeny) and biological evolution (phylogeny). Unlike his many popular books of essays, it was a technical book, and over the following decades it was influential in stimulating research into heterochrony, changes in the timing of embryonic development, which had been neglected since Ernst Haeckel's theory that ontogeny recapitulates phylogeny had been largely discredited.

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. Despite the complexity of the science, certain unifying concepts consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis.

Tinbergen's four questions, named after Nikolaas Tinbergen, are complementary categories of explanations for animal behaviour. These are also commonly referred to as levels of analysis. It suggests that an integrative understanding of behaviour must include: ultimate (evolutionary) explanations, in particular the behaviour (1) adaptive function and (2) phylogenetic history; and the proximate explanations, in particular the (3) underlying physiological mechanisms and (4) ontogenetic/developmental history.

In evolutionary biology, function is the reason some object or process occurred in a system that evolved through natural selection. That reason is typically that it achieves some result, such as that chlorophyll helps to capture the energy of sunlight in photosynthesis. Hence, the organism that contains it is more likely to survive and reproduce, in other words the function increases the organism's fitness. A characteristic that assists in evolution is called an adaptation; other characteristics may be non-functional spandrels, though these in turn may later be co-opted by evolution to serve new functions.

Human ethology is the study of human behavior. Ethology as a discipline is generally thought of as a sub-category of biology, though psychological theories have been developed based on ethological ideas. The bridging between biological sciences and social sciences creates an understanding of human ethology. The International Society for Human Ethology is dedicated to advancing the study and understanding of human ethology.

Outline of evolution Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution:

Behavioral plasticity refers to a change in an organism's behavior that results from exposure to stimuli, such as changing environmental conditions. Behavior can change more rapidly in response to changes in internal or external stimuli than is the case for most morphological traits and many physiological traits. As a result, when organisms are confronted by new conditions, behavioral changes often occur in advance of physiological or morphological changes. For instance, larval amphibians changed their antipredator behavior within an hour after a change in cues from predators, but morphological changes in body and tail shape in response to the same cues required a week to complete.

von Baer's laws (embryology)

Von Baer's laws of embryology are four rules proposed by Karl Ernst von Baer to explain the observed pattern of embryonic development in different species.

In biology, constructive development refers to the hypothesis that organisms shape their own developmental trajectory by constantly responding to, and causing, changes in both their internal state and their external environment. Constructive development can be contrasted with programmed development, the hypothesis that organisms develop according to a genetic program or blueprint. The constructivist perspective is found in philosophy, most notably developmental systems theory, and in the biological and social sciences, including developmental psychobiology and key themes of the extended evolutionary synthesis. Constructive development may be important to evolution because it enables organisms to produce functional phenotypes in response to genetic or environmental perturbation, and thereby contributes to adaptation and diversification.