Hypermetamorphosis

Last updated

Hypermetamorphosis, or heteromorphosis, [1] is a term used mainly in entomology; it refers to a class of variants of holometabolism, that is to say, complete insect metamorphosis. Hypermetamorphosis is exceptional in that some instars, usually larval instars, are functionally and visibly distinct from the rest. The differences between such instars usually reflect transient stages in the life cycle; for instance, one instar might be mobile while it searches for its food supply, while the following instar immediately sheds its locomotory organs and settles down to feed until it is fully grown and ready to change into the reproductive stage, which in turn, does not have the same nutritional requirements as the larvae.

Contents

Description

These planidia are fairly typical of certain species of parasitoid wasps, in this case the genus Perilampus. Hypermetamorphosis2.JPG
These planidia are fairly typical of certain species of parasitoid wasps, in this case the genus Perilampus .
Hypermetamorphosis in Meloidae. This form of planidium is a typical triungulin and feeds in its first instar. In its second instar it turns into a less triungulin-like form, and feeds again. It then turns into the Scarabaeoid form for two or more instars, depending on species. After that it adopts pre-pupal forms, pupates, and finally emerges as an adult beetle. Hypermetamorphosis in Meloidae.JPG
Hypermetamorphosis in Meloidae. This form of planidium is a typical triungulin and feeds in its first instar. In its second instar it turns into a less triungulin-like form, and feeds again. It then turns into the Scarabaeoid form for two or more instars, depending on species. After that it adopts pre-pupal forms, pupates, and finally emerges as an adult beetle.
Triungulin on a butterfly. This probably is an example of phoresy rather than parasitism. Triungulin on a butterfly (5739202307).jpg
Triungulin on a butterfly. This probably is an example of phoresy rather than parasitism.

Hypermetamorphosis, as the term normally is used in entomology, refers to a class of variants of holometabolism. In hypermetamorphosis some larval instars are functionally and morphologically distinct from each other.

The general case in holometabolous insects such as flies, moths, or wasps, is that all larval stages look similar, growing larger as the insect matures. In hypermetamorphic insects however, at least one instar, usually the first, differs markedly from the rest. In many hypermetamorphic species, the first instars are numerous, tiny, very mobile larvae that must find their way to a food source. The general term for a mobile first instar is a planidium, from the Greek language πλάνος (planos) meaning "roaming".

In typical examples the first-instar larval morphology is campodeiform (meaning: elongated, flattened, and active, more or less resembling the morphology of insects in the genus Campodea ). There is however, considerable variety in the forms of planidia that occur in various families and orders; in the beetle family Meloidae, the three-clawed planidium originally was called a triungulin, and similar planidia for example, those of the Strepsiptera, may also be called triungula.

In their planidial form, many species do not feed; they first change their skin and change their bodily form to a form suited to eating rather than seeking out food. The second instar is completely different in appearance and behavior, often becoming grub- or maggot-like in the instars before pupation. As a rule, the instars after the first ecdysis are of more or less constant form and not highly mobile, being specialised for feeding and growth until the final larval instar metamorphoses into the pupal form. [2]

There are examples of holometabolic species in which there are certain striking differences between the earliest instars and the later instars, though without their generally being regarded as hypermetamorphic. For example, early instars of many Papilionidae are of a colour, shape and texture that suggest bird droppings; later instars that are larger and would simply stand out in such camouflage, typically become green. [3] The prepupa or last larval instar of insects ceases to feed and (in some cases) searches for a place to pupate, [4] [5] but this also is not considered hypermetamorphosis.

Vv cm early instar.jpg
Papilio Polyetes 08062012 (1).jpg
Early instars of Papilio polytes (left) resemble a bird dropping, while the late ones (right) are too big to do so, and are simply camouflaged as a leaf. This striking coloration difference between the instars is generally not regarded as hypermetamorphosis.

Various forms of hypermetamorphosis

Hypermetamorphosis usually occurs as an adaptation of the ontogeny of certain parasitoid insects, notably:

Technically, the subimago of the Ephemeroptera might be described as a stage in a form of hypermetamorphosis, but that is not common practice. [6]

Examples of hypermetamorphosis in any given insect order are analogous and not homologous to those in any other order; for example, hypermetamorphosis in the Acroceridae was not derived from the Strepsiptera.

Related Research Articles

<span class="mw-page-title-main">Beetle</span> Order of insects

Beetles are insects that form the order Coleoptera, in the superorder Holometabola. Their front pair of wings are hardened into wing-cases, elytra, distinguishing them from most other insects. The Coleoptera, with about 400,000 described species, is the largest of all orders, constituting almost 40% of described insects and 25% of all known animal species; new species are discovered frequently, with estimates suggesting that there are between 0.9 and 2.1 million total species. Found in almost every habitat except the sea and the polar regions, they interact with their ecosystems in several ways: beetles often feed on plants and fungi, break down animal and plant debris, and eat other invertebrates. Some species are serious agricultural pests, such as the Colorado potato beetle, while others such as Coccinellidae eat aphids, scale insects, thrips, and other plant-sucking insects that damage crops.

<span class="mw-page-title-main">Metamorphosis</span> Profound change in body structure during the postembryonic development of an organism

Metamorphosis is a biological process by which an animal physically develops including birth transformation or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some insects, jellyfish, fish, amphibians, mollusks, crustaceans, cnidarians, echinoderms, and tunicates undergo metamorphosis, which is often accompanied by a change of nutrition source or behavior. Animals can be divided into species that undergo complete metamorphosis ("holometaboly"), incomplete metamorphosis ("hemimetaboly"), or no metamorphosis ("ametaboly").

<span class="mw-page-title-main">Strepsiptera</span> Order of insects

The Strepsiptera are an order of insects with eleven extant families that include about 600 described species. They are endoparasites of other insects, such as bees, wasps, leafhoppers, silverfish, and cockroaches. Females of most species never emerge from the host after entering its body, finally dying inside it. The early-stage larvae do emerge because they must find an unoccupied living host, and the short-lived males must emerge to seek a receptive female in her host. They are believed to be most closely related to beetles, from which they diverged 300–350 million years ago, but do not appear in the fossil record until the mid-Cretaceous around 100 million years ago.

<span class="mw-page-title-main">Larva</span> Juvenile form of distinct animals before metamorphosis

A larva is a distinct juvenile form many animals undergo before metamorphosis into their next life stage. Animals with indirect development such as insects, amphibians, or cnidarians typically have a larval phase of their life cycle.

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is an science study of colonization of a dead body by arthropods. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Silphidae</span> Family of beetles

Silphidae is a family of beetles that are known commonly as large carrion beetles, carrion beetles or burying beetles. There are two subfamilies: Silphinae and Nicrophorinae. Nicrophorines are sometimes known as sexton beetles. The number of species is relatively small at around two hundred. They are more diverse in the temperate region although a few tropical endemics are known. Both subfamilies feed on decaying organic matter such as dead animals. The subfamilies differ in which uses parental care and which types of carcasses they prefer. Silphidae are considered to be of importance to forensic entomologists because when they are found on a decaying body they are used to help estimate a post-mortem interval.

<span class="mw-page-title-main">Pupa</span> Life stage of some insects undergoing transformation

A pupa is the life stage of some insects undergoing transformation between immature and mature stages. Insects that go through a pupal stage are holometabolous: they go through four distinct stages in their life cycle, the stages thereof being egg, larva, pupa, and imago. The processes of entering and completing the pupal stage are controlled by the insect's hormones, especially juvenile hormone, prothoracicotropic hormone, and ecdysone. The act of becoming a pupa is called pupation, and the act of emerging from the pupal case is called eclosion or emergence.

<span class="mw-page-title-main">Ovoviviparity</span> Gestation type

Ovoviviparity, ovovivipary, ovivipary, or aplacental viviparity is a term used as a "bridging" form of reproduction between egg-laying oviparous and live-bearing viviparous reproduction. Ovoviviparous animals possess embryos that develop inside eggs that remain in the mother's body until they are ready to hatch.

<span class="mw-page-title-main">Telephone-pole beetle</span> Species of beetle

The telephone-pole beetle is a beetle native to the eastern United States, and the only living representative of the otherwise extinct family Micromalthidae. Larvae of the beetle live in decaying wood wood and can be pests to wooden structures, lending them their common name, the 'telephone-pole beetle.'

<span class="mw-page-title-main">Instar</span> Developmental stage of arthropods between moults

An instar is a developmental stage of arthropods, such as insects, which occurs between each moult (ecdysis) until sexual maturity is reached. Arthropods must shed the exoskeleton in order to grow or assume a new form. Differences between instars can often be seen in altered body proportions, colors, patterns, changes in the number of body segments or head width. After shedding their exoskeleton (moulting), the juvenile arthropods continue in their life cycle until they either pupate or moult again. The instar period of growth is fixed; however, in some insects, like the salvinia stem-borer moth, the number of instars depends on early larval nutrition. Some arthropods can continue to moult after sexual maturity, but the stages between these subsequent moults are generally not called instars.

<span class="mw-page-title-main">Holometabola</span> Superorder of insects

Holometabola, also known as Endopterygota, is a superorder of insects within the infraclass Neoptera that go through distinctive larval, pupal, and adult stages. They undergo a radical metamorphosis, with the larval and adult stages differing considerably in their structure and behaviour. This is called holometabolism, or complete metamorphism.

Larviform female is a biological phenomenon occurring in some insect species, where the females in the adult stage of metamorphosis resemble the larvae to various degrees, while the male appears more morphologically adult. The resemblance may mean the larviform female has the same coloring as the larvae and/or similar body plans, and may be the result of the female arresting development at earlier stages of ecdysis than males. The female may not pupate at all, as in Xenos vesparum. Typically, the female is wingless and generally larger than the male. Larviform females still reach sexual maturity. Larviform females occur in several insect groups, including most Strepsiptera and Bagworm moths, many elateroid beetles, and some gall midges.

<span class="mw-page-title-main">Hydrophilidae</span> Family of beetles

Hydrophilidae, also known colloquially as water scavenger beetles, is a family of beetles. Aquatic hydrophilids are notable for their long maxillary palps, which are longer than their antennae. Several of the former subfamilies of Hydrophilidae have recently been removed and elevated to family rank; Epimetopidae, Georissidae, Helophoridae, Hydrochidae, and Spercheidae. While the majority of hydrophilids are aquatic, around a third of described species are terrestrial, mostly belonging to the subfamily Sphaeridiinae.

<span class="mw-page-title-main">Histeridae</span> Family of beetles

Histeridae is a family of beetles commonly known as clown beetles or hister beetles. This very diverse group of beetles contains 3,900 species found worldwide. They can be easily identified by their shortened elytra that leaves two of the seven tergites exposed, and their geniculate (elbowed) antennae with clubbed ends. These predatory feeders are most active at night and will fake death if they feel threatened. This family of beetles will occupy almost any kind of niche throughout the world. Hister beetles have proved useful during forensic investigations to help in time of death estimation. Also, certain species are used in the control of livestock pests that infest dung and to control houseflies. Because they are predacious and will even eat other hister beetles, they must be isolated when collected.

Holometabolism, also called complete metamorphosis, is a form of insect development which includes four life stages: egg, larva, pupa, and imago. Holometabolism is a synapomorphic trait of all insects in the superorder Holometabola. Immature stages of holometabolous insects are very different from the mature stage. In some species the holometabolous life cycle prevents larvae from competing with adults because they inhabit different ecological niches. The morphology and behavior of each stage are adapted for different activities. For example, larval traits maximize feeding, growth, and development, while adult traits enable dispersal, mating, and egg laying. Some species of holometabolous insects protect and feed their offspring. Other insect developmental strategies include ametabolism and hemimetabolism.

<span class="mw-page-title-main">Phoridae</span> Family of flies

The Phoridae are a family of small, hump-backed flies resembling fruit flies. Phorid flies can often be identified by their escape habit of running rapidly across a surface rather than taking to the wing. This behaviour is a source of one of their alternate names, scuttle fly. Another vernacular name, coffin fly, refers to Conicera tibialis. About 4,000 species are known in 230 genera. The most well-known species is cosmopolitan Megaselia scalaris. At 0.4 mm in length, the world's smallest fly is the phorid Euryplatea nanaknihali.

<span class="mw-page-title-main">Varied carpet beetle</span> Species of beetle

The varied carpet beetle is a 3 mm-long beetle belonging to the family Dermestidae. They are a common species, often considered a pest of domestic houses and, particularly, natural history museums, where the larvae may damage natural fibers and can damage carpets, furniture, clothing, and insect collections. A. verbasci was also the first insect to be shown to have an annual behavioral rhythm and to date remains a classic example of circannual cycles in animals.

<span class="mw-page-title-main">Acroceridae</span> Family of flies

The Acroceridae are a small family of odd-looking flies. They have a hump-backed appearance with a strikingly small head, generally with a long proboscis for accessing nectar. They are rare and not widely known. The most frequently applied common names are small-headed flies or hunch-back flies. Many are bee or wasp mimics. Because they are parasitoids of spiders, they also are sometimes known as spider flies.

<span class="mw-page-title-main">Planidium</span>

A planidium is a specialized form of insect larva seen in the first-instar of a few families of insects that have parasitoidal ways of life. They are usually flattened, highly sclerotized (hardened), and quite mobile. The function of the planidial stage is to find a host on which the later larval instars may feed, generally until the insect pupates.

<i>Synthesiomyia nudiseta</i> Species of fly

Synthesiomyia nudiseta is one of the largest flies in the family Muscidae. The fly has a pair of forewings; the paired hind wings have been reduced to halteres that help with stability and movement during flight. Key characteristics of this species include plumose segmented aristae, well-developed calypters, and sternopleural bristles. Synthesiomyia nudiseta is a forensically important species because it is necrophilous and can therefore help determine the time of colonization for the post mortem interval with its known life cycle.

References

  1. P.J. Gullan & P.S. Cranston. 2010. The Insects: An Outline of Entomology, 4th Edition. Wiley-Blackwell. ISBN   978-1-4443-3036-6
  2. Triplehorn, Charles (2005). Borror and Delong's Introduction to the Study of Insects. Peter Marshall.[ page needed ]
  3. Prudic, Kathleen L.; Oliver, Jeffrey C.; Sperling, Felix A. H. (2007-12-04). "The signal environment is more important than diet or chemical specialization in the evolution of warning coloration". Proceedings of the National Academy of Sciences. 104 (49): 19381–19386. doi: 10.1073/pnas.0705478104 . ISSN   0027-8424. PMC   2148298 . PMID   18029450.
  4. Knapp, Sarah (2019-04-25). "Complete Metamorphosis: Definition and Examples". Biology Dictionary. Retrieved 2024-02-15.
  5. "FORENSIC ENTOMOLOGY : THE USE OF INSECTS". www.sfu.ca. Retrieved 2024-02-15.
  6. Richards, O. W.; Davies, R.G. (1977). Imms' General Textbook of Entomology: Volume 1: Structure, Physiology and Development Volume 2: Classification and Biology. Berlin: Springer. ISBN   0-412-61390-5.[ page needed ]