Sveconorwegian orogeny

Last updated
Geological map of Fennoscandia.
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Archean rocks of the Karelia, Belomorian and Kola domains
Proterozoic rocks of the Karelia and Kola domains
Svecofennian Domain
Transscandinavian Igneous Belt
Timanide Orogen
Sveconorwegian Orogen inc. the Western Gneiss Region
Caledonian nappes Overview Baltic shield.png
Geological map of Fennoscandia.
   Archean rocks of the Karelia, Belomorian and Kola domains
   Proterozoic rocks of the Karelia and Kola domains
  Sveconorwegian Orogen inc. the Western Gneiss Region

The Sveconorwegian orogeny was an orogenic system active 1140 to 960 million years ago and currently exposed as the Sveconorwegian orogenic belt in southwestern Sweden and southern Norway. [1] [2] In Norway the orogenic belt is exposed southeast of the front of the Caledonian nappe system and in nappe windows. [3] The Sveconorwegian orogen is commonly grouped within the Grenvillian Mesoproterozoic orogens. [4] Contrary to many other known orogenic belts the Sveconorwegian orogens eastern border does not have any known suture zone with ophiolites. [3]

Contents

Tectonic segments

The Sveconorwegian orogen orogenic belt is composed of five segments largely made up of gneiss that were disrupted by both extension and compression in the timespan between 1140 and 980 million years ago. [1] From west to east the segments are the terranes of Telemarkia, Bamble, Kongsberg and Idefjorden plus the Eastern Segment. The segments are separated from each other by large-scale shear zones. [5]

Development

The period between 1050 and 980 million years ago was the Sveconorwegian orogeny's most active phase with the Telemarkia and Idefjord Terranes being subject to metamorphism, thickening of their crust and deformation. This episode, known as the Agder phase, was followed by the Falkenberg phase that lasted until 970 million years ago during which the orogeny propagated eastward. [5] There are differing views on the nature of the orogeny. One view, known as the "classical", postulates that a continent–continent collision, possibly with Amazonia, was responsible for giving the orogenic belts its current characteristics. An alternative view postulated in 2013 claims such collision did likely not occur as the characteristics of the orogen would be explained solely as the result of subduction and accretion of smaller terranes. These different views have implications for the configuration of the ancient supercontinent Rodinia. [4]

The southern part of what would eventually become the Western Gneiss Region of Norway formed migmatites and was intruded by granites during the orogeny. [9] About 920 million years ago, in the aftermath of the orogeny, Bohus granite intruded the Idefjorden terrane. [10]

Related Research Articles

<span class="mw-page-title-main">Metamorphic rock</span> Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

In geology, a terrane is a crust fragment formed on a tectonic plate and accreted or "sutured" to crust lying on another plate. The crustal block or fragment preserves its distinctive geologic history, which is different from the surrounding areas—hence the term "exotic" terrane. The suture zone between a terrane and the crust it attaches to is usually identifiable as a fault. A sedimentary deposit that buries the contact of the terrane with adjacent rock is called an overlap formation. An igneous intrusion that has intruded and obscured the contact of a terrane with adjacent rock is called a stitching pluton.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

<span class="mw-page-title-main">Narryer Gneiss Terrane</span> Geological complex of ancient rocks in Western Australia

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Leucogranite</span>

Leucogranite is a light-colored, granitic, igneous rock containing almost no dark minerals. Alaskite is a synonym.

<span class="mw-page-title-main">Limpopo Belt</span>

The Limpopo Belt is located in South Africa and Zimbabwe, runs E-NE, and joins the Kaapvaal Craton to the south with the Zimbabwe Craton to the north. The belt is of high-grade metamorphic rocks that have undergone a long cycle of metamorphism and deformation that ended 2.0 billion years ago, after the stabilisation of the adjacent massifs. The belt comprises 3 components: the Central Zone, the North Marginal Zone and the South Marginal Zone.

In geology ultrahigh-temperature metamorphism (UHT) is extreme crustal metamorphism with metamorphic temperatures exceeding 900 °C. Granulite-facies rocks metamorphosed at very high temperatures were identified in the early 1980s, although it took another decade for the geoscience community to recognize UHT metamorphism as a common regional phenomenon. Petrological evidence based on characteristic mineral assemblages backed by experimental and thermodynamic relations demonstrated that Earth's crust can attain and withstand very high temperatures (900–1000 °C) with or without partial melting.

<span class="mw-page-title-main">Saxothuringian Zone</span> Structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe

The Saxothuringian Zone, Saxo-Thuringian zone or Saxothuringicum is in geology a structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe. Because rocks of Hercynian age are in most places covered by younger strata, the zone is not everywhere visible at the surface. Places where it crops out are the northern Bohemian Massif, the Spessart, the Odenwald, the northern parts of the Black Forest and Vosges and the southern part of the Taunus. West of the Vosges terranes on both sides of the English Channel are also seen as part of the zone, for example the Lizard complex in Cornwall or the Léon Zone of the Armorican Massif (Brittany).

<span class="mw-page-title-main">Moldanubian Zone</span> A tectonic zone in Europe formed during the Variscan or Hercynian Orogeny

The Moldanubian Zone is in the regional geology of Europe a tectonic zone formed during the Variscan or Hercynian Orogeny. The Moldanubian Zone crops out in the Bohemian Massif and the southern part of the Black Forest and Vosges and contains the highest grade metamorphic rocks of Variscan age in Europe.

<span class="mw-page-title-main">Gotthard nappe</span>

The Gotthard nappe is, in the geology of the Alps a nappe in the Helvetic zone of Switzerland. It consists of crystalline rocks that were, before the formation of the Alps, part of the upper crust of the southern margin of the European continent. As it names suggests, the Gotthard nappe lies in close proximity to the Gotthard Massif.

The Massif Central is one of the two large basement massifs in France, the other being the Armorican Massif. The Massif Central's geological evolution started in the late Neoproterozoic and continues to this day. It has been shaped mainly by the Caledonian orogeny and the Variscan orogeny. The Alpine orogeny has also left its imprints, probably causing the important Cenozoic volcanism. The Massif Central has a very long geological history, underlined by zircon ages dating back into the Archaean 3 billion years ago. Structurally it consists mainly of stacked metamorphic basement nappes.

<span class="mw-page-title-main">Geology of the Pyrenees</span> European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

<span class="mw-page-title-main">Lewisian complex</span> Suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland

The Lewisian complex or Lewisian gneiss is a suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland, forming part of the Hebridean Terrane and the North Atlantic Craton. These rocks are of Archaean and Paleoproterozoic age, ranging from 3.0–1.7 billion years (Ga). They form the basement on which the Torridonian and Moine Supergroup sediments were deposited. The Lewisian consists mainly of granitic gneisses with a minor amount of supracrustal rocks. Rocks of the Lewisian complex were caught up in the Caledonian orogeny, appearing in the hanging walls of many of the thrust faults formed during the late stages of this tectonic event.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">Svecofennian orogeny</span> Geological process that resulted in formation of continental crust in Sweden, Finland and Russia

The Svecofennian orogeny is a series of related orogenies that resulted in the formation of much of the continental crust in what is today Sweden and Finland plus some minor parts of Russia. The orogenies lasted from about 2000 to 1800 million years ago during the Paleoproterozoic Era. The resulting orogen is known as the Svecofennian orogen or Svecofennides. To the west and southwest the Svecofennian orogen limits with the generally younger Transscandinavian Igneous Belt. It is assumed that the westernmost fringes of the Svecofennian orogen have been reworked by the Sveconorwegian orogeny just as the western parts of the Transscandinavian Igneous Belt has. The Svecofennian orogeny involved the accretion of numerous island arcs in such manner that the pre-existing craton grew with this new material from what is today northeast to the southwest. The accretion of the island arcs was also related to two other processes that occurred in the same period; the formation of magma that then cooled to form igneous rocks and the metamorphism of rocks.

The Mars Hill Terrane (MHT) is a belt of rocks exposed in the southern Appalachian Mountains, between Roan Mountain, North Carolina and Mars Hill, North Carolina. The terrane is located at the junction between the Western Blue Ridge and the Eastern Blue Ridge Mountains.

<span class="mw-page-title-main">Geology of Sweden</span>

The geology of Sweden is the regional study of rocks, minerals, tectonics, natural resources and groundwater in the country. The oldest rocks in Sweden date to more than 2.5 billion years ago in the Precambrian. Complex orogeny mountain building events and other tectonic occurrences built up extensive metamorphic crystalline basement rock that often contains valuable metal deposits throughout much of the country. Metamorphism continued into the Paleozoic after the Snowball Earth glaciation as the continent Baltica collided with an island arc and then the continent Laurentia. Sedimentary rocks are most common in southern Sweden with thick sequences from the last 250 million years underlying Malmö and older marine sedimentary rocks forming the surface of Gotland.

<span class="mw-page-title-main">Geology of the Czech Republic</span>

The geology of the Czech Republic is very tectonically complex, split between the Western Carpathian Mountains and the Bohemian Massif.

References

  1. 1 2 Andesson, Jenny; Bingen, Bernard; Cornell, David; Johansson, Leif; Möller, Charlotte (2008). "The Sveconorwegian orogen of southern Scandinavia: setting, petrology and geochronology of polymetamorphic high-grade terranes". 33 IGC excursion No 51, August 2 – 5.
  2. "Sveconorwegian Orogen". Britannica.com. Retrieved 26 August 2015.
  3. 1 2 3 4 5 Bingen, Bernard; Nordgulen, Øystein; Viola, Giulio (2008). "A four-phase model for the Sveconorwegian orogeny, SW Scandinavia". Norwegian Journal of Geology . 88: 43–72.
  4. 1 2 3 4 Slagstad, Trond; Roberts, Nick M. W.; Markens, Rogens; Røhr, Torkil; Schiellerup, Henrik (2013). "A non-collisional, accretionary Sveconorwegian orogen". Terra Nova . 25: 30–37. doi: 10.1111/ter.12001 .
  5. 1 2 3 4 5 6 Viola, G.; Henderson, I.H.C.; Bingen, B.; Hendriks, B.W.H. (2011). "The Grenvillian–Sveconorwegian orogeny in Fennoscandia: Back-thrusting and extensional shearing along the "Mylonite Zone"". Precambrian Research . 189: 368–388. doi:10.1016/j.precamres.2011.06.005.
  6. 1 2 3 4 5 Bingen, Bernard; Andersson, Jenny; Söderlund, Ulf; Möller, Charlotte (2008). "The Mesoproterozoic in the Nordic countries". Episodes . 31 (1): 29–34.
  7. Gorbatschev, Roland; Bogdanova, Svetlana (1993). "Frontiers in the Baltic Shield". Precambrian Research. 64: 3–21. doi:10.1016/0301-9268(93)90066-b.
  8. Möller, Charlotte; Andersson, Jenny; Dyck, Brendan; Ildiko Antal, Lundin (2015). "Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen". Lithos . 226: 147–168. doi: 10.1016/j.lithos.2014.12.013 .
  9. Austrheim, Håkon; Corfu, Fernando; Bryhni, Inge; Andersen, Torgeir B. (2003). "The Proterozoic Hustad igneous complex: a low strain enclave with a key to the history of the Western Gneiss Region of Norway" (PDF). Precambrian Research . 120: 149–175. doi:10.1016/S0301-9268(02)00167-5.
  10. Schouenborg, Björn; Eliasson, Thomas (2015). The Swedish Bohus granite - a stone with a fascinating history. EGU General Assembly. Vienna, Austria. Bibcode:2015EGUGA..1714883S.