Geology of the Norwegian Sea

Last updated

The geology of the Norwegian Sea began to form 60 million years ago in the early Cenozoic, as rifting led to the eruption of mafic oceanic crust, separating Scandinavia and Greenland. Together with the North Sea the Norwegian Sea has become highly researched since the 1960s with the discovery of oil and natural gas in thick offshore sediments on top of the Norwegian continental shelf.

Contents

Geological history

The metamorphic crystalline basement rock underlying the continental shelf in the Norwegian Sea is related to the ancient continent Baltica, which now forms the stable East European Craton. The sequence of events in the Mid-Norwegian Shelf is perhaps most relevant to the geological history of the Norwegian Sea. Early rifts began in the late Paleozoic between what is now Norway and Greenland during the time of the Caledonian orogeny. Rifting seemingly continued through the Carboniferous, Permian and into the Mesozoic, but subsequent tectonic activity and thick overlying sediment complicates the record. Large offshore sandstone deposits suggest a high-energy shallow water environment during the early Jurassic. The Harstad, Tromsø, Bjørnøya and Sørvestsnaget basins all developed during the late Jurassic and into the Cretaceous as the rifting which formed the Atlantic Ocean propagated northward and began to open the Norwegian Sea. Fine-grained clastic rock filled in the Vøring and Møre basins by the mid-Cretaceous while coarser material continued to fill in the Vøring basin during the Cenomanian and Campanian. The rifting which finally completed the opening of the sea from 60 to 55 million years ago created the Utgard High and Fles Fault Complex, uplifted southwestern Norway and led to the eruption of large volumes of lava for almost six million years. After this period, the continental shelf became a more passive margin. Reverse faults and the formation of domes and anticlines at some point in the mid-Cenozoic and the Molo Formation indicate some mild tectonic activity and a slight uplift of western Scandinavia. [1]

Oil and gas exploration

Oil and gas exploration on the Mid-Norwegian Shelf began in 1980, with fields producing since 1993. The Halten and Dønna terraces of the nearer shore Trøndelag Platform were first to be explored. Most drilling in the "Haltenbanken" targeted the complicated fault blocks and horst and graben features of the Halten Terrace, particularly the Spekk Formation. Other rocks include the sandstones and shales of the Åre, Tilje, Tofte, Ile and Garn formations. Hydrocarbons are as much as four or five kilometers deep in the Kristin and Smørbukk fields.

In the late 1990s, exploration shifted further offshore. Initially, there were concerns that when thick layers of lava deposited they may have superheated the rocks, perhaps generating natural gas. However, Cretaceous rocks in the Vøring and Møre basins are incredibly thick, ranging between six and seven kilometers. Jurassic source rocks matured by the time Cretaceous rocks were done being deposited. Subsequently, when the Helland Hansen Arch, Ormen Lange Dome and Gjallar Ridge formed some gas was trapped at depth. [2]

The Ormen Lange natural gas field started producing from Cretaceous and Paleocene sandstones sometimes over a kilometer beneath the water and beneath Storegga slide debris in the Møre basin. Throughout the 1990s the Norwegian Deepwater Program conducted research on the debris field of this massive underwater landslide, 8000 years ago, to determine if oil and gas development would be safe in the field. [3]

Related Research Articles

The Perth Basin is a thick, elongated sedimentary basin in Western Australia. It lies beneath the Swan Coastal Plain west of the Darling Scarp, representing the western limit of the much older Yilgarn Craton, and extends further west offshore. Cities and towns including Perth, Busselton, Bunbury, Mandurah and Geraldton are built over the Perth Basin.

The Queen Charlotte Basin is a structural basin mostly beneath the continental shelf offshore, between Haida Gwaii, Vancouver Island, and the British Columbia mainland, roughly coincident with the physiographic region named the Hecate Depression.

<span class="mw-page-title-main">San Juan Basin</span>

The San Juan Basin is a geologic structural basin located near the Four Corners region of the Southwestern United States. The basin covers 7,500 square miles and resides in northwestern New Mexico, southwestern Colorado, and parts of Utah and Arizona. Specifically, the basin occupies space in the San Juan, Rio Arriba, Sandoval, and McKinley counties in New Mexico, and La Plata and Archuleta counties in Colorado. The basin extends roughly 100 miles (160 km) N-S and 90 miles (140 km) E-W.

<span class="mw-page-title-main">Geology of Norway</span>

The geology of Norway encompasses the history of Earth that can be interpreted by rock types found in Norway, and the associated sedimentological history of soils and rock types.

<span class="mw-page-title-main">Offshore Indus Basin</span> Basin in offshore Pakistan

The offshore Indus Basin is one of the two basins in offshore Pakistan, the other one being the offshore Makran Basin. The Murray Ridge separates the two basins. The offshore Indus basin is approximately 120 to 140 kilometers wide and has an areal extent of ~20,000 square km.

<span class="mw-page-title-main">Tarfaya Basin</span>

The Tarfaya Basin is a structural basin located in southern Morocco that extends westward into the Moroccan territorial waters in the Atlantic Ocean. The basin is named for the city of Tarfaya located near the border of Western Sahara, a region governed by the Kingdom of Morocco. The Canary Islands form the western edge of the basin and lie approximately 100 km to the west.

<span class="mw-page-title-main">Geology of Lebanon</span>

The geology of Lebanon remains poorly studied prior to the Jurassic. The country is heavily dominated by limestone, sandstone, other sedimentary rocks, and basalt, defined by its tectonic history. In Lebanon, 70% of exposed rocks are limestone karst.

The geology of Somalia is built on more than 700 million year old igneous and metamorphic crystalline basement rock, which outcrops at some places in northern Somalia. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate. The geology of Somaliland, the de facto independent country recognized as part of Somalia, is to some degree better studied than that of Somalia as a whole. Instability related to the Somali Civil War and previous political upheaval has limited geologic research in places while heightening the importance of groundwater resources for vulnerable populations.

<span class="mw-page-title-main">Geology of Tanzania</span>

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

<span class="mw-page-title-main">Geology of Somaliland</span>

The geology of Somaliland is very closely related to the geology of Somalia. Somaliland is a de facto independent country within the boundaries that the international community recognizes as Somalia. Because it encompasses the former territory of British Somaliland, the region is historically better researched than former Italian Somaliland. Somaliland is built on more than 700 million year old igneous and metamorphic crystalline basement rock.. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

<span class="mw-page-title-main">Geology of Senegal</span>

The geology of Senegal formed beginning more than two billion years ago. The Archean greenschist Birimian rocks common throughout West Africa are the oldest in the country, intruded by Proterozoic granites. Basins formed in the interior during the Paleozoic and filled with sedimentary rocks, including tillite from a glaciation. With the rifting apart of the supercontinent Pangaea in the Mesozoic, the large Senegal Basin filled with thick sequences of marine and terrestrial sediments. Sea levels declined in the Eocene forming large phosphate deposits. Senegal is blanketed in thick layers of terrestrial sediments formed in the Quaternary. The country has extensive natural resources, including gold, diamonds, and iron.

The geology of Mississippi includes some deep igneous and metamorphic crystalline basement rocks from the Precambrian known only from boreholes in the north, as well as sedimentary sequences from the Paleozoic. The region long experienced shallow marine conditions during the tectonic evolutions of the Mesozoic and Cenozoic, as coastal plain sediments accumulated up to 45,000 feet thick, including limestone, dolomite, marl, anhydrite and sandstone layers, with some oil and gas occurrences and the remnants of Cretaceous volcanic activity in some locations.

The geology of Alaska includes Precambrian igneous and metamorphic rocks formed in offshore terranes and added to the western margin of North America from the Paleozoic through modern times. The region was submerged for much of the Paleozoic and Mesozoic and formed extensive oil and gas reserves due to tectonic activity in the Arctic Ocean. Alaska was largely ice free during the Pleistocene, allowing humans to migrate into the Americas.

<span class="mw-page-title-main">Geology of New York (state)</span> Overview of the geology of the U.S. state of New York

The geology of the State of New York is made up of ancient Precambrian crystalline basement rock, forming the Adirondack Mountains and the bedrock of much of the state. These rocks experienced numerous deformations during mountain building events and much of the region was flooded by shallow seas depositing thick sequences of sedimentary rock during the Paleozoic. Fewer rocks have deposited since the Mesozoic as several kilometers of rock have eroded into the continental shelf and Atlantic coastal plain, although volcanic and sedimentary rocks in the Newark Basin are a prominent fossil-bearing feature near New York City from the Mesozoic rifting of the supercontinent Pangea.

The geology of Kyrgyzstan began to form during the Proterozoic. The country has experienced long-running uplift events, forming the Tian Shan mountains and large, sediment filled basins.

The geology of Thailand includes deep crystalline metamorphic basement rocks, overlain by extensive sandstone, limestone, turbidites and some volcanic rocks. The region experienced complicated tectonics during the Paleozoic, long-running shallow water conditions and then renewed uplift and erosion in the past several million years ago.

The geology of Denmark includes 12 kilometers of unmetamorphosed sediments lie atop the Precambrian Fennoscandian Shield, the Norwegian-Scottish Caledonides and buried North German-Polish Caledonides. The stable Fennoscandian Shield formed from 1.45 billion years ago to 850 million years ago in the Proterozoic. The Fennoscandian Border Zone is a large fault, bounding the deep basement rock of the Danish Basin—a trough between the Border Zone and the Ringkobing-Fyn High. The Sorgenfrei-Tornquist Zone is a fault-bounded area displaying Cretaceous-Cenozoic inversion.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

The geology of California is highly complex, with numerous mountain ranges, substantial faulting and tectonic activity, rich natural resources and a history of both ancient and comparatively recent intense geological activity. The area formed as a series of small island arcs, deep-ocean sediments and mafic oceanic crust accreted to the western edge of North America, producing a series of deep basins and high mountain ranges.

References

  1. Faleide, J.I.; Bjørlykke, K.; Gabrielsen, R.H. (2010). Geology of the Norwegian Continental Shelf (PDF). University of Oslo. pp. 735–749.
  2. Faleide, Bjørlykke & Gabrielsen 2010, p. 488-489.
  3. https://www.geologi.no/images/NJG_articles/NGT_4_09_Ottesen_scr.pdf [ bare URL PDF ]