Variscan orogeny

Last updated
Location of the Hercynian-Alleghenian mountain belts in the middle of the Carboniferous period. Present day coastlines are indicated in grey for reference. Hercynides EN.svg
Location of the Hercynian-Alleghenian mountain belts in the middle of the Carboniferous period. Present day coastlines are indicated in grey for reference.

The Variscan or Hercynianorogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea.



The name Variscan, comes from the Medieval Latin name for the district Variscia , the home of a Germanic tribe, the Varisci; Eduard Suess, professor of geology at the University of Vienna, coined the term in 1880. (Variscite, a rare green mineral first discovered in the Vogtland district of Saxony in Germany, which is in the Variscan belt, has the same etymology.)

Hercynian, on the other hand, derives from the Hercynian Forest. Both words were descriptive terms of strike directions observed by geologists in the field, variscan for southwest to northeast, hercynian for northwest to southeast. The variscan direction reflected the direction of ancient fold belts cropping out throughout Germany and adjacent countries and the meaning shifted from direction to the fold belt proper.

One of the pioneers in research on the Variscan fold belt was the German geologist Franz Kossmat, establishing a still valid division of the European Variscides in 1927. [2]

The other direction, Hercynian, for the direction of the Harz Mountains in Germany, saw a similar shift in meaning. Today, Hercynian is often used as a synonym for Variscan but is somewhat less used than the latter. [3] In the United States, it is used only for European orogenies; the contemporaneous and genetically linked mountain-building phases in the Appalachian Mountains have different names. [4] [5]

The regional term Variscan underwent a further meaning shift since the 1960s. Geologists generally began to use it to characterize late Paleozoic fold-belts and orogenic phases having an age of approximately 380 to 280 Ma.

Some publications use the term Variscan for fold belts of even younger age, [6] deviating from the meaning as a term for the North American and European orogeny related to the Gondwana-Laurasia collision.


Distribution of orogenies with similar ages to the Variscan orogeny (shaded) Distribution of varisican orogenies.png
Distribution of orogenies with similar ages to the Variscan orogeny (shaded)

The North American and European Variscan Belt includes the mountains of Portugal and Spain (Galicia, and Pyrenees), southwestern Ireland (i.e. Munster), Cornwall, Devon, Pembrokeshire, the Gower Peninsula and the Vale of Glamorgan. Its effects are present in France from Brittany, below the Paris Basin to the Ardennes, the Massif Central, the Vosges and Corsica.

The Variscan Belt reappears in Sardinia in Italy and in Germany where the Rhine Massif (Ardennes, Eifel, Hunsrück, Taunus and other regions on both sides of Middle Rhine Valley), the Black Forest and Harz Mountains remain as testimony. In southern Iberia it is marked by a classic strike-slip suture zone between very distinct suspect terranes, and clear evidence can be seen of ductile shearing between high-grade metamorphic rocks and lower grade sedimentary rocks in a wide belt north of the Algarve and extending into the northernmost part the autonomous region of Andalusia and southern Extremadura. [7] [8]

In the Czech Republic and southwestern Poland the Bohemian Massif is the eastern end of the unmodified Variscan belt of crustal deformation in Europe. Further Variscan developments to the southeast are partly hidden and overprinted by the Alpine orogeny. In the Alps a Variscan core is built by Mercantour, Pelvoux, Belledonne, Montblanc and Aar Massif. Dinaric, Greek and Turkish mountain chains are the southeastern termination of the Variscan proper. [9]

The Variscan was contemporaneous with the Acadian and Alleghenian orogeny in the United States and Canada, responsible for forming the Ouachita and Appalachian Mountains. North American areas with Variscan foldbelts include New England, Nova Scotia and Newfoundland and Labrador. The Moroccan Meseta and the Anti-Atlas in northwestern Africa show close relations to the Appalachian Mountains and used to form the eastern part of the Appalachian orogeny before the opening of the Atlantic Ocean in Jurassic times. [10] 'Variscan' mountains in a broad chronological sense include the Urals, the Pamir, the Tian Shan and other Asian foldbelts. [11] [12]


The Variscan orogeny involved a complicated heterogeneous assembly of different microplates and heterochronous collisions, making the exact reconstruction of the plate tectonic processes difficult. Plate convergence that caused the Caledonian orogeny in the Silurian continued to form the Variscan orogeny in the succeeding Devonian and Carboniferous Periods. Both orogenies resulted in the assembly of a super-continent, Pangaea, which was essentially complete by the end of the Carboniferous.

In the Ordovician Period, a land mass, which has been named Gondwana (present day South America, Africa, Antarctica and Australia), straddled the space between the South Pole and the Equator on one side of the globe. Off to the west were three other masses: Laurentia, Siberia and Baltica, located as if on the vertices of a triangle. To the south of them was a large archipelago, the terrane Avalonia, rifted off the north Gondwana margin in early Ordovician.

By the end of the Silurian and in Early Devonian times, Baltica and Laurentia drifted towards each other, closing the Iapetus Ocean between them. They collided in the Caledonian orogeny and formed the Caledonide mountains of North America, Greenland, the British Isles and Norway. Seafloor spreading to the south of Avalonia pushed the latter into north Laurentia and thrust up the northern Appalachian Mountains in the acadian phase of the Caledonian orogeny. Contemporaneously the Tornquist Sea between Avalonia and Baltica was entirely closed. Thus Avalonia formed the southern coast of the new continent Euramerica (Laurussia, the Old Red Sandstone continent in present-day North America, the British Isles, northern Germany, Scandinavia and western Russia).

In late Devonian and in the Carboniferous the archipelago Armorica of southern Europe, which had rifted off Gondwana after Avalonia later in the Ordovician, was pushed into Avalonia, creating a second range, the North American/European Variscan, to the east of the Caledonide/Appalachian. The collision of Gondwana proper with Laurussia followed in the early Carboniferous, when the Variscan belt was already in place and actively developing.

By the end of the Carboniferous, Gondwana had united with Laurussia on its western end through northern South America and northwestern Africa. Siberia was approaching from the northeast, separated from Laurussia only by shallow waters. Collision with Siberia produced the Ural Mountains in the latest Paleozoic and completed the formation of Pangaea. Eastern Laurussia was still divided from Gondwana by the Paleotethys Ocean. In the Triassic Period of the Mesozoic Era, animals could move without oceanic impediment from Siberia over the North Pole to Antarctica over the South Pole. In the Mesozoic Era, rifting and subsequent opening of the Atlantic split Pangaea. As a consequence, the Variscan Belt around the then periphery of Baltica ended up many hundreds of miles from the Appalachians.


  1. Based on Matte 2001 and Ziegler 1990
  2. Kossmat, F. (1927). "Gliederung des varistischen Gebirgsbaus". Abh. Sächs. Geol. L.-A. Leipzig. 1: 1–39.
  3. Google search on December 29, 2007: ca. 44.500 for Variscan orogeny, ca. 15.000 Hercynian orogeny. In German: 1.170 for "variszische Orogenese", 154 for "herzynische Orogenese".
  4. Tectonics of the Devonian. Website of University of California Museum of Paleontology. Accessed on December 29, 2007.
  5. "The Hercynian Orogeny". Historical Geology, University of North Texas.
  6. Lee, K. Y. (1989). "Geology of petroleum and coal deposits in the North China Basin, Eastern China". USGS Bulletin 1871. Table 1, p. 3.CS1 maint: postscript (link)
  7. Martínez Catalán, José R. (2012-07-01). "The Central Iberian arc, an orocline centered in the Iberian Massif and some implications for the Variscan belt". International Journal of Earth Sciences. 101 (5): 1299–1314. doi:10.1007/s00531-011-0715-6. ISSN   1437-3262.
  8. Crespo-Blanc, Ana; Orozco, Miguel (1991-10-01). "The boundary between the Ossa-Morena and Southportuguese Zones (Southern Iberian Massif): Major suture in the European Hercynian Chain". Geologische Rundschau. 80 (3): 691–702. doi:10.1007/BF01803695. ISSN   1432-1149.
  9. Tectonic Map of the western Tethysides Archived 2008-04-23 at the Wayback Machine . Institute of Geology and Paleontology of the University of Lausanne, Switzerland. Accessed on December 29, 2007.
  10. Burkhard, M.; Caritg, S.; Helg, U.; Robert-Charrue, C.; Soulaimani, A. (2006). "Tectonics of the anti-Atlas of Morocco" (PDF). Comptes Rendus Geoscience. 338 (1): 11–24. doi:10.1016/j.crte.2005.11.012 . Retrieved 1 November 2015.
  11. Paleotethys. Paleogeographic reconstructions for the Devonian and Carboniferous Archived 2011-06-08 at the Wayback Machine . Tethyan Plate Tectonic Working Group of the University of Lausanne, Switzerland. Accessed on December 29, 2007.
  12. Paleogeographic configuration Lower Carboniferous. Paleomap Project by C.Scotese. Accessed on December 29, 2007.

Further reading

Related Research Articles

Laurasia Northern supercontinent that formed part of the Pangaea supercontinent

Laurasia, was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a blend of Laurentia and Asia.

Baltica Late-Proterozoic to early-Palaeozoic continent

Baltica is a paleocontinent that formed in the Paleoproterozoic and now constitutes northwestern Eurasia, or Europe north of the Trans-European Suture Zone and west of the Ural Mountains. The thick core of Baltica, the East European Craton, is more than three billion years old and formed part of the Rodinia supercontinent at c.Ga.

Avalonia Microcontinent in the Paleozoic era named for the Avalon Peninsula in Newfoundland

Avalonia was a microcontinent in the Paleozoic era. Crustal fragments of this former microcontinent underlie south-west Great Britain, southern Ireland, and the eastern coast of North America. It is the source of many of the older rocks of Western Europe, Atlantic Canada, and parts of the coastal United States. Avalonia is named for the Avalon Peninsula in Newfoundland.

Acadian orogeny North American orogeny

The Acadian orogeny is a long-lasting mountain building event which began in the Middle Devonian, reaching a climax in the early Late Devonian. It was active for approximately 50 million years, beginning roughly around 375 million years ago, with deformational, plutonic, and metamorphic events extending into the Early Mississippian. The Acadian orogeny is the third of the four orogenies that created the Appalachian orogen and subsequent basin. The preceding orogenies consisted of the Potomac and Taconic orogeny, which followed a rift/drift stage in the Late Neoproterozoic. The Acadian orogeny involved the collision of a series of Avalonian continental fragments with the Laurasian continent. Geographically, the Acadian orogeny extended from the Canadian Maritime provinces migrating in a southwesterly direction toward Alabama. However, the Northern Appalachian region, from New England northeastward into Gaspé region of Canada, was the most greatly affected region by the collision.

Caledonian orogeny Mountain building event caused by the collision of Laurentia, Baltica and Avalonia

The Caledonian orogeny was a mountain-building era recorded in the northern parts of the British Isles, the Scandinavian Mountains, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the continents and terranes of Laurentia, Baltica and Avalonia collided.

The Uralian orogeny refers to the long series of linear deformation and mountain building events that raised the Ural Mountains, starting in the Late Carboniferous and Permian periods of the Palaeozoic Era, c. 323–299 and 299–251 million years ago (Mya) respectively, and ending with the last series of continental collisions in Triassic to early Jurassic times.

The Rheic Ocean was an ocean which separated two major palaeocontinents, Gondwana and Laurussia (Laurentia-Baltica-Avalonia). One of the principal oceans of the Palaeozoic, its sutures today stretch 10,000 km (6,200 mi) from Mexico to Turkey and its closure resulted in the assembly of the supercontinent Pangaea and the formation of the Variscan–Alleghenian–Ouachita orogenies.

Geology of England

The geology of England is mainly sedimentary. The youngest rocks are in the south east around London, progressing in age in a north westerly direction. The Tees-Exe line marks the division between younger, softer and low-lying rocks in the south east and the generally older and harder rocks of the north and west which give rise to higher relief in those regions. The geology of England is recognisable in the landscape of its counties, the building materials of its towns and its regional extractive industries.

Geological history of Earth The sequence of major geological events in Earths past

The geological history of Earth follows the major events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

Pangaea Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from earlier continental units approximately 335 million years ago, and began to break apart about 175 million years ago. In contrast to the present Earth and its distribution of continental mass, Pangaea was centred on the Equator and surrounded by the superocean Panthalassa. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

Rhenohercynian Zone Fold belt of west and central Europe, formed during the Hercynian orogeny

The Rhenohercynian Zone or Rheno-Hercynian zone in structural geology describes a fold belt of west and central Europe, formed during the Hercynian orogeny. The zone consists of folded and thrusted Devonian and early Carboniferous sedimentary rocks that were deposited in a back-arc basin along the southern margin of the then existing paleocontinent Laurussia.

The geology of the North Sea describes the geological features such as channels, trenches, and ridges today and the geological history, plate tectonics, and geological events that created them.

Saxothuringian Zone Structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe

The Saxothuringian Zone, Saxo-Thuringian zone or Saxothuringicum is in geology a structural or tectonic zone in the Hercynian or Variscan orogen of central and western Europe. Because rocks of Hercynian age are in most places covered by younger strata, the zone is not everywhere visible at the surface. Places where it crops out are the northern Bohemian Massif, the Spessart, the Odenwald, the northern parts of the Black Forest and Vosges and the southern part of the Taunus. West of the Vosges terranes on both sides of the English Channel are also seen as part of the zone, for example the Lizard complex in Cornwall or the Léon Zone of the Armorican Massif (Brittany).

Carolina terrane exotic terrane from central Georgia to central Virginia in the United States

The Carolina Terrane, also called the Carolina Superterrane or Carolinia, is an exotic terrane running ~370 miles (600 km) approximately North-South from central Georgia to central Virginia in the United States. It constitutes a major part of the eastern Piedmont Province.

Bohemian Massif Central European geological structure

The Bohemian Massif is in the geology of Central Europe a large massif stretching over the central Czech Republic, eastern Germany, southern Poland and northern Austria. It is surrounded by four ranges: the Ore Mountains in the northwest, the Sudetes in the northeast, the Bohemian-Moravian Highlands in the southeast, and the Bohemian Forest (Šumava) in the southwest. The massif encompasses a number of mittelgebirges and consists of crystalline rocks, which are older than the Permian and therefore deformed during the Variscan Orogeny.

Moldanubian Zone A tectonic zone in Europe formed during the Variscan or Hercynian Orogeny

The Moldanubian Zone is in the regional geology of Europe a tectonic zone formed during the Variscan or Hercynian Orogeny. The Moldanubian Zone crops out in the Bohemian Massif and the southern part of the Black Forest and Vosges and contains the highest grade metamorphic rocks of Variscan age in Europe.

The Tornquist Sea or Tornquist Ocean was a sea located between the palaeocontinents Avalonia and Baltica about 600 to 450 million years ago. The remains of the sea today form a suture stretching across northern Europe.

Armorican terrane Microcontinent or group of continental fragments rifted away from Gondwana

The Armorican terrane, Armorican terrane assemblage, or simply Armorica, was a microcontinent or group of continental fragments that rifted away from Gondwana towards the end of the Silurian and collided with Laurussia towards the end of the Carboniferous during the Variscan orogeny. The name is taken from Armorica, the Gaulish name for a large part of northwestern France that includes Brittany, as this matches closely to the present location of the rock units that form the main part of this terrane.

The geology of the Czech Republic is highly tectonically complex, split between the Western Carpathian Mountains and the Bohemian Massif.