The geology of the North Sea describes the geological features such as channels, trenches, and ridges today and the geological history, plate tectonics, and geological events that created them.
The basement of the North Sea was formed in an intraplate setting during the Precambrian. Rigid blocks were overlaid with various depositions, sands and salts. These rigid blocks were transformed to a metamorphic base due to tectonic processes such as continental collisions which cause horizontal pressure, friction and distortion in the Caledonian plate cycle as well as the Variscan plate cycle. The blocks were also subjected to metamorphic evolution during the Triassic and Jurassic periods when the rock was heated up by the intrusion of hot molten rock called magma from the Earth's interior.
The Caledonian (Iapetus) plate cycle saw the formation of the Iapetus suture during the Caledonian orogeny. The Iapetus suture was a major weakness creating a volcanic fault in the central North Sea during the later Jurassic period. The Iapetus ocean was replaced with a suture line and mountain range when Laurentia, Baltica and Avalonia continents collided. This collision formed Laurussia. [1] : [51]
The Variscan (Rheic) plate cycle resulted in the formation of Pangaea when Gondwana and Laurussia collided. The elimination of the Rheic Ocean caused the formation of a massive mountain range through the border countries of the present day North Sea. [1] : [52]
Triassic and Jurassic volcanic rifting and graben fault systems created highs and lows in the North Sea area. This was followed by late Mesozoic and Cenozoic subsidence creating the intracratonic sedimentary basin of the North Sea. This era experienced higher sea levels because of sea floor spreading, cooler lithosphere temperatures. Plate tectonics and continental orogenies combined to create the continents and the North Sea as we know them today. The final events affecting the North Sea coastline features and submarine topography occurred in the Cenozoic era.
The Mesozoic structures underneath the North Sea can be seen as a failed rift system. [2] After initial crustal extension and the formation of rift basins during the Triassic and Jurassic periods, [1] : [70] the extension concentrated on the other side of the British Isles, which would create the northern Atlantic Ocean. The rift basins even saw some inversion during the late Cretaceous and Eocene epochs. [3] From the Oligocene onward, tensions in the European crust caused by the Alpine orogeny to the south cause a new, more modest phase of extension. [4] Some grabens in the area are still active.
The subsurface of the North Sea area is dominated by grabens: the north-west south-east oriented Lower Rhine Graben under the southern North Sea and the Netherlands, [5] the north–south-oriented North Sea Central Graben that begins north of the Dutch coast and ends in the region east of Scotland, and the Viking Graben along the south-east Norwegian coast. [4] : [97] [5] : [4] The Horn Graben is a smaller graben east of the Central Graben and in front of the Danish coast. [5] : [8] Another smaller structure is known as the Terschelling Graben, which borders the Central Graben in the west, just north of the Netherlands. [6] A larger graben is found in the subsurface below the Skagerrak, this north–south structure is called the Bamble-Oslo Graben. [7] The Viking Graben is separated from the Faeroe Shetland Basin below the Atlantic by the Shetland Platform, the two structures join in the area north-east of the Shetland Islands. [8] [9]
The area we now call the North Sea was interspersed amid several separate continental areas (Siberia, Baltica, Gondwana, and Laurentia) as well as the Iapetus Ocean and Tornquist Sea. [1] Plate tectonics and continental collisions (orogenies) brought the features together of the North Sea that we recognise presently.
The Finnmarkian orogeny affected northern Norway in the early Palaeozoic era. [1] In the late Ordovician period, Avalonia collided with Baltica creating the Tornquist Margin. This corresponds to the suture of the north German-Polish Caledonides. By the end of the Ordovician the Tornquist Sea had been eliminated. [1] : [51] The Tornquist-Tesseyre fault system also had its beginnings in the orogeny closing the Tornquist Sea. [1] : [53] Baltica subducted below Avalonia.
The Atthollian Orogeny was a collision between the Scottish Highlands and a Midland Valley area which very likely created the Highland Boundary Fault. [1] : [53]
During the late Silurian period Baltica then collided with Laurentia which is named the Scandian phase of the Caledonian Orogeny. Baltica was subducted below Laurentia forming the Caledonian Belt. [11] The Caledonian Orogeny caused the closure of the Iapetus Ocean when the continents and terranes of Laurentia, Baltica and Avalonia collided. The combined mass of the three continents formed a "new" continent: Laurussia or Euramerica. [12] The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 Ma. The basement formations of the North Sea were roughly formed during this Caledonian geosynclinal stage of the Cambrian – Devonian periods. [13] The Caledonian mountains range helped create the 'Old Red Sandstone' continent at the joining of the tectonic plates. The Rheic Ocean began to open to the south. [14]
The Acadian orogeny occurred in the Lower Devonian period (Paleozoic era), about 500 Ma. The continents of Laurentia and Baltica collided. The Iapetus Ocean disappeared under this continental collision. These plate tectonic forces built up a mountain range extending from what is now termed the Adirondacks north through Nova Scotia, the British Isles, Norway and the eastern margin of Greenland. [11] Greenland and Scandinavia were situated at the amid the equator and mid tropics (20 to 20 degrees north).[ clarification needed ] The area now comprising Greenland-Scandinavia-British Isles began drifting northward in the Late Carboniferous-Early Permian period. A high amount of volatile magmatism caused dikes parallel to the Tornquist Margin which were formative areas of the North Sea – British Isles -Germany – southwest Sweden area. [15]
The Rheic Ocean or Proto-Tethys Ocean was eliminated during the Hercynian/Variscan orogeny, and the Pangaea supercontinent formed. The continents of Gondwana and Laurussia collided, both were drifting north, however Gondwana was drifting at a faster rate. The mountain range which was created extended along Spain, Brittany, central Germany and into Poland. The closure of the Rheic Ocean in the late Carboniferous formed thrusts in southern England. [1]
The Pangaea supercontinent was added to in the late Permian period when Siberia collided with Baltica and Kazakhstan. Pangaea was surrounded by massive subduction plate tectonics. The North Sea area was central to the continental Pangaea supercontinent. In this period the area now named the North Sea was in the subtropics and was a non-marine arid environment. [15]
During the Triassic period, the Viking and Central Graben volcanic systems were formed. [1] Upward thrusting rifts were formed during the Triassic comprising the taphrogenic stage. The Atlantic rift zone is associated with the North Sea rifts zone. [13]
"Rift basins share similar characteristics and histories, one that is conducive to evaporite deposition. They typically form during extension of the earth's crust with a distinct basement architecture made up of grabens and half-grabens segmented by transverse structures. Salt deposition can be restricted to individual half-grabens or deposited regionally depending upon the rift geometry, sedimentation rates, and time of evaporite formation."
— Dr. Rowan [17]
The Triassic saw active crustal stretching via the rifting process, lower sea levels and volcanic activity. [18] [19]
As the Jurassic (200–145 Ma) started, Pangaea began to break up into two continents, Gondwana and Laurasia. [20] At this time sea levels rose. The burial of algae and bacteria below the mud of the sea floor during this time resulted in the formation of North Sea oil and natural gas, much of it trapped in overlying sandstone by deposits formed as the seas fell to form the swamps and salty lakes and lagoons that were home to dinosaurs. [21] [22]
Volcanism and a rift system developed in the central North Sea area where basaltic lavas were extruded. [23] The mantle warped upwards creating a dome in the middle of the North Sea where the Iapetus Suture intersected the Tornquist-Teisseyre fault system. The dome area was amidst the Viking Graben, Central Graben and Moray Firth Basin. The Scotland rifting and the extrusive centre of the Forties were associated with the uplifted area. [1] [15] The Long Forties and Horda Basin were also volcanic centres. During this time the sea level fell. [15] : [26] Major reservoirs were created in the North sea during this time as clastics and sands were deposited in paralic environments. [15]
During the cretaceous the main rift expansion was in an east and west direction. [15] : [26] There are two basins the large South Permian Basin, and the smaller Northern Permian basin, which are east–west trending. The basins are separated by the Ringkøbing-Fyn system of highs. [1] : [47] The Viking Graben lies between the Shetland Platform and the Fenno-Scandian high. The Central Graben lies amid the Permian basins and their high. The formation of these has been influenced by the zig zag suture line of the Caledonian orogeny with its areas of crustal tension weakness. Sea floor expansion continues, and sea levels rise. The sea level is 100 meters (330 ft) to 200 meters (660 ft) higher than present day levels. [15]
In northwestern Europe, chalk deposits from the Upper Cretaceous are characteristic for the Chalk Group, which forms the white cliffs of Dover on the south coast of England and similar cliffs on the French Normandian coast. The group is found in England, northern France, the low countries, northern Germany, Denmark and in the subsurface of the southern part of the North Sea. Stagnation of deep sea currents in middle Cretaceous times caused anoxic circumstances in the sea water. In many places around the world, dark anoxic shales were formed during this interval. [24] These shales are an important source rock for oil and gas, for example in the subsurface of the North Sea. Across the north central and northern North Sea, the Chalk Group is a major seal unit, overlying a number of blocks of reservoir rocks and preventing their fluid contents from migrating upwards.
The Silverpit crater, a 20 kilometers (12 mi) diameter suspected impact crater in the North Sea (60–65 Ma). The age of the feature is constrained between 74 – 45 million years (Late Cretaceous – Eocene). [25] The Sole Pit Basin was created by deep burial of depocentres. [1] : [70]
Geologically, the Cenozoic is the era when the continents moved into their current positions. [27] The Alpine Orogeny, the spreading of the Mid Atlantic ridge, and the creation of the Atlantic Ocean basin occurred in the Cenozoic era. The Iceland hot spot and North Atlantic rifting helped to exhume the British Isles. [1] : [46] In the early Palaeogene period (Caenozoic Era) between 63 and 52 Ma, the North Sea formed, and Britain was uplifted. Some of this uplift was along old lines of weakness from the Caledonian and Variscan Orogenies long before.
The post rift phase followed late Jurassic rift events during the late Mesozoic and Cenozoic thermal subsidence. [1] : [72] As the rifting stopped, then regional subsidence occurred creating an intracratonic sedimentary basin. Subsidence occurred due to lithosphere cooling. [28] : [95] Some of this uplift was along old lines of weakness from the Caledonian and Variscan Orogenies long before. Intraplate compression was caused when the Atlantic Ocean basin formed. [1] : [46] the Mid-Atlantic spreading ridge has been busy separating east from west. Greenland separated from North America and the rifting altered direction during the Paleogene, which caused Northern Europe to separate from Greenland. During the Eocene period, the last land bridge across the Atlantic sank. [29]
The Alpine Orogeny that occurred about 50 Ma was responsible for the shaping of the London Basin syncline and the Weald anticline to the south. The eastern end of the London Basin merges with the basin of the North Sea, extending on land along the north Kent coast to Reculver and up the east coast of Essex and into Suffolk, where it is overlain by Pleistocene 'Crag' deposits which cover much of eastern Suffolk and Norfolk and are better considered as part of the North Sea basin. [30]
In the Miocene and Pliocene epochs of the Neogene period, further uplift and erosion occurred, particularly in the Pennines. Plant and animal types developed into their modern forms, and by about 2 Ma the landscape would have been broadly recognisable today.
The Pleistocene saw the sea retreat from the basin as global sea-level fell due to accumulation of ice sheets. [31] The major changes during the Pleistocene epoch have been brought about by several recent ice ages. [32] During glaciation, water was taken from the oceans to form the ice at high latitudes, causing global sea level to drop by about 120 meters, exposing the continental shelves and forming land-bridges between land-masses for animals to migrate. During deglaciation, the melted ice-water returned to the oceans, causing sea level to rise. This process can cause sudden shifts in coastlines and hydration systems resulting in newly submerged lands, emerging lands, collapsed ice dams resulting in salination of lakes, new ice dams creating vast areas of freshwater, and a general alteration in regional weather patterns on a large but temporary scale. It can even cause temporary reglaciation. This type of chaotic pattern of rapidly changing land, ice, saltwater and freshwater has been proposed as the likely model for the Baltic and Scandinavian regions, as well as much of central North America at the end of the Last Glacial Maximum LGM, with the present-day coastlines only being achieved in the last few millennia of prehistory. Also, the effect of elevation on Scandinavia submerged a vast continental plain that had existed under much of what is now the North Sea, connecting the British Isles to Continental Europe.
At one time there was land where the strait is now, a south-east extension of the Weald joining what is now Great Britain to continental Europe. The Strait of Dover opened during the Ice Age, as described below; as a result the British Isles have now become islands not connected with continental Europe any longer. [33] [34] The English Channel was formed by erosion caused by two major floods. The first was about 425,000 years ago, when an ice-dammed lake in the southern North Sea overflowed and broke the Weald-Artois chalk range in a catastrophic erosion and flood event. Afterwards, the Thames and Scheldt flowed through the gap into the English Channel, but the Meuse and Rhine still flowed northwards. In a second flood about 225,000 years ago the Meuse and Rhine were ice-dammed into a lake that broke catastrophically through a high weak barrier (perhaps chalk, or end-moraines left by the ice sheet). Both floods cut massive flood channels in the dry bed of the English Channel, somewhat like the Channeled Scablands in the USA. [35] [36]
Glaciation had an enormous impact on the coastline of the North Sea. The west coast of Denmark is notable as it had been very glaciated during the Saale Glacial Stage and Weichselian glaciation. As the sea levels fell in the Holocene epoch, Denmark's north coast gave way to raised spits, beach ridges and cliffs. [37]
During the glacial maximum in Scandinavia regionally referred to as the Weichsel glaciation, only the western parts of Jutland were ice-free, and a large part of what is today the North Sea was dry land connecting Jutland with Britain. It is also in Denmark that the only Scandinavian ice-age animals older than 13,000 BC are found. In the period following the last interglacial before the current one (Eemian Stage), the coast of Norway was also ice-free. The Baltic Sea, with its unique brackish water, is a result of meltwater from the Weichsel glaciation combining with saltwater from the North Sea when the straits between Sweden and Denmark opened. The North Sea produces fossils from every period of the Pleistocene. The area was a dry steppe landscape, overlain with rivers, where animals such as the elephant-like mastodon, scimitar cat, southern mammoth, hippopotamus, horses, bears and giant deer lived. They were flooded at the close of the last Ice Age. [38]
{{cite book}}
: |work=
ignored (help){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: |work=
ignored (help){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link){{cite web}}
: CS1 maint: multiple names: authors list (link)Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.
The geology of Great Britain is renowned for its diversity. As a result of its eventful geological history, Great Britain shows a rich variety of landscapes across the constituent countries of England, Wales and Scotland. Rocks of almost all geological ages are represented at outcrop, from the Archaean onwards.
The Iapetus Ocean was an ocean that existed in the late Neoproterozoic and early Paleozoic eras of the geologic timescale. The Iapetus Ocean was situated in the southern hemisphere, between the paleocontinents of Laurentia, Baltica and Avalonia. The ocean disappeared with the Acadian, Caledonian and Taconic orogenies, when these three continents joined to form one big landmass called Euramerica. The "southern" Iapetus Ocean has been proposed to have closed with the Famatinian and Taconic orogenies, meaning a collision between Western Gondwana and Laurentia.
Baltica is a paleocontinent that formed in the Paleoproterozoic and now constitutes northwestern Eurasia, or Europe north of the Trans-European Suture Zone and west of the Ural Mountains. The thick core of Baltica, the East European Craton, is more than three billion years old and formed part of the Rodinia supercontinent at c. 1 Ga.
Avalonia was a microcontinent in the Paleozoic era. Crustal fragments of this former microcontinent underlie south-west Great Britain, southern Ireland, and the eastern coast of North America. It is the source of many of the older rocks of Western Europe, Atlantic Canada, and parts of the coastal United States. Avalonia is named for the Avalon Peninsula in Newfoundland.
The Acadian orogeny is a long-lasting mountain building event which began in the Middle Devonian, reaching a climax in the early Late Devonian. It was active for approximately 50 million years, beginning roughly around 375 million years ago, with deformational, plutonic, and metamorphic events extending into the Early Mississippian. The Acadian orogeny is the third of the four orogenies that formed the Appalachian orogen and subsequent basin. The preceding orogenies consisted of the Potomac and Taconic orogeny, which followed a rift/drift stage in the Late Neoproterozoic. The Acadian orogeny involved the collision of a series of Avalonian continental fragments with the Laurasian continent. Geographically, the Acadian orogeny extended from the Canadian Maritime provinces migrating in a southwesterly direction toward Alabama. However, the Northern Appalachian region, from New England northeastward into Gaspé region of Canada, was the most greatly affected region by the collision.
The Caledonian orogeny was a mountain-building era recorded in the northern parts of the British Isles, the Scandinavian Mountains, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the continents and terranes of Laurentia, Baltica and Avalonia collided.
The Variscan or Hercynianorogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea.
The Rheic Ocean was an ocean which separated two major palaeocontinents, Gondwana and Laurussia (Laurentia-Baltica-Avalonia). One of the principal oceans of the Palaeozoic, its sutures today stretch 10,000 km (6,200 mi) from Mexico to Turkey and its closure resulted in the assembly of the supercontinent Pangaea and the formation of the Variscan–Alleghenian–Ouachita orogenies.
The geology of England is mainly sedimentary. The youngest rocks are in the south east around London, progressing in age in a north westerly direction. The Tees–Exe line marks the division between younger, softer and low-lying rocks in the south east and the generally older and harder rocks of the north and west which give rise to higher relief in those regions. The geology of England is recognisable in the landscape of its counties, the building materials of its towns and its regional extractive industries.
The geological history of Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.
The geology of Norway encompasses the history of Earth that can be interpreted by rock types found in Norway, and the associated sedimentological history of soils and rock types.
Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.
Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was centred on the equator and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.
This is a list of articles related to plate tectonics and tectonic plates.
The Iapetus Suture is one of several major geological faults caused by the collision of several ancient land masses forming a suture. It represents in part the remains of what was once the Iapetus Ocean. Iapetus was the father of Atlas in Greek mythology, making his an appropriate name for what used to be called the 'Proto-Atlantic Ocean'. When the Atlantic Ocean opened, in the Cretaceous period, it took a slightly different line from that of the Iapetus suture, with some originally Laurentian rocks being left behind in north-west Europe and other, Avalonian, rocks remaining as part of Newfoundland.
The Tornquist Sea or Tornquist Ocean was a sea located between the palaeocontinents Avalonia and Baltica about 600 to 450 million years ago. The remains of the sea today form a suture stretching across northern Europe.
The geological structure of Great Britain is complex, resulting as it does from a long and varied geological history spanning more than two billion years. This piece of the Earth's crust has experienced several episodes of mountain building or 'orogenies', each of which has added further complexity to the picture.
The North Sea basin is located in northern Europe and lies between the United Kingdom, and Norway just north of The Netherlands and can be divided into many sub-basins. The Southern North Sea basin is the largest gas producing basin in the UK continental shelf, with production coming from the lower Permian sandstones which are sealed by the upper Zechstein salt. The evolution of the North Sea basin occurred through multiple stages throughout the geologic timeline. First the creation of the Sub-Cambrian peneplain, followed by the Caledonian Orogeny in the late Silurian and early Devonian. Rift phases occurred in the late Paleozoic and early Mesozoic which allowed the opening of the northeastern Atlantic. Differential uplift occurred in the late Paleogene and Neogene. The geology of the Southern North Sea basin has a complex history of basinal subsidence that had occurred in the Paleozoic, Mesozoic, and Cenozoic. Uplift events occurred which were then followed by crustal extension which allowed rocks to become folded and faulted late in the Paleozoic. Tectonic movements allowed for halokinesis to occur with more uplift in the Mesozoic followed by a major phase of inversion occurred in the Cenozoic affecting many basins in northwestern Europe. The overall saucer-shaped geometry of the southern North Sea Basin indicates that the major faults have not been actively controlling sediment distribution.
The Scandinavian Caledonides are the vestiges of an ancient, today deeply eroded orogenic belt formed during the Silurian–Devonian continental collision of Baltica and Laurentia, which is referred to as the Scandian phase of the Caledonian orogeny. The size of the Scandinavian Caledonides at the time of their formation can be compared with the size of the Himalayas. The area east of the Scandinavian Caledonides, including parts of Finland, developed into a foreland basin where old rocks and surfaces were covered by sediments. Today, the Scandinavian Caledonides underlay most of the western and northern Scandinavian Peninsula, whereas other parts of the Caledonides can be traced into West and Central Europe as well as parts of Greenland and eastern North America.
The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline.