Great Glen Fault

Last updated

Map of the Great Glen Fault and other late Caledonian strike-slip faults in Scotland and northwestern Ireland Great Glen Fault map.png
Map of the Great Glen Fault and other late Caledonian strike-slip faults in Scotland and northwestern Ireland

The Great Glen Fault is a strike-slip fault that runs through the Great Glen in Scotland. Occasional moderate tremors have been recorded over the past 150 years.

Contents

Location

Aligned northeast to southwest, the Great Glen Fault extends further southwest in a straight line through Loch Linnhe and the Firth of Lorne, and then on into northwestern Ireland, directly through Lough Swilly, Donegal Bay and Clew Bay as the Leannan Fault. To the northeast the fault connects to the Walls Boundary Fault and the associated Melby Fault and Nestings Fault, before becoming obscured by the effects of Mesozoic rifting to the north of Shetland. [1]

The fault continues on the North American side of the North Atlantic Ocean, but is no longer part of a contiguous fault, as the complete fault was broken when the Mid-Atlantic Ridge formed 200 million years ago. The North American side of the fault runs through the length of northwestern Newfoundland, Canada, as the Cabot Fault (Long Range Fault) and on into the Gulf of St. Lawrence. [2] It is at least 300 miles (480 kilometres) long.

Geological history

Metamorphic zones, and Moine Thrust Belt, Great Glen Fault and Highland Boundary Fault Scotland metamorphic zones EN.svg
Metamorphic zones, and Moine Thrust Belt, Great Glen Fault and Highland Boundary Fault
Euramerica in the Devonian (416 to 359 Ma) with Baltica, Avalonia (Cabot Fault, Newfoundland and Great Glen Fault, Scotland) and Laurentia Caledonides EN.svg
Euramerica in the Devonian (416 to 359 Ma) with Baltica, Avalonia (Cabot Fault, Newfoundland and Great Glen Fault, Scotland) and Laurentia

The Great Glen Fault has a long movement history. It formed towards the end of the Caledonian orogeny associated with the collision between the Laurentia and Baltic tectonic plates at the end of the Silurian continuing into the Early Devonian (likely age range 430–390 Ma (million years)). The movement at that time was sinistral (left-lateral), the same as the closely related set of faults sub-parallel to the main part of the Great Glen Fault, which include the Strathconon Fault and Strathglass Faults to the northwest and the Laggan Fault, Tyndrum Fault, and Ericht-Laidon Fault to the southeast. [1] The second main phase of movement was during the Carboniferous, this time with a dextral sense.

The exact timing is uncertain, but associated folds within the Devonian are cut by members of the Late Carboniferous to Early Permian dyke swarm. The Great Glen Fault had its final phase of movement during the Late Cretaceous to Early Tertiary. The displacement is estimated to be 64 miles (104 km). [3]

Erosion along the fault zone during Quaternary glaciation formed Loch Ness.

Recent history

In the 19th century, a boat canal known as the Caledonian Canal was dug through the Great Glen; the canal is still used today.

Seismic activity

There is not agreement about whether the Great Glen Fault is "active" – accumulating seismic slip. [4] Some parts of the fault are moving in opposite directions, but the extent of displacement is not agreed on. The displacement could be at least the full length of the exposed fault on mainland Scotland. [5]

Most researchers consider the fault active or a "reactivated strike-slip fault within the continental crust" that is accumulating tectonic strain. [4] [6] [7] Some researchers say the observed seismic activity of the last 300 years does not support a theory of re-activation. According to Roger Musson, the fault does not show any signs of present activity. Musson places the 1901 Inverness earthquake on a secondary fault of the Great Glen Fault. [4] [8]

Occasional moderate tremors have been recorded over the past 150 years. Accordingly seismic buffers were incorporated into the Kessock Bridge carrying the A9 road out of Inverness.

See also

Related Research Articles

<span class="mw-page-title-main">Fault (geology)</span> Fracture or discontinuity in displaced rock

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

<span class="mw-page-title-main">Moine Thrust Belt</span> Fault in Highland, Scotland, UK

The Moine Thrust Belt or Moine Thrust Zone is a linear tectonic feature in the Scottish Highlands which runs from Loch Eriboll on the north coast 190 kilometres (120 mi) southwest to the Sleat peninsula on the Isle of Skye. The thrust belt consists of a series of thrust faults that branch off the Moine Thrust itself. Topographically, the belt marks a change from rugged, terraced mountains with steep sides sculptured from weathered igneous, sedimentary and metamorphic rocks in the west to an extensive landscape of rolling hills over a metamorphic rock base to the east. Mountains within the belt display complexly folded and faulted layers and the width of the main part of the zone varies up to ten kilometres, although it is significantly wider on Skye.

<span class="mw-page-title-main">Highland Boundary Fault</span> Geological fault zone crossing Scotland

The Highland Boundary Fault is a major fault zone that traverses Scotland from Arran and Helensburgh on the west coast to Stonehaven in the east. It separates two different geological terranes which give rise to two distinct physiographic terrains: the Highlands and the Lowlands, and in most places it is recognisable as a change in topography. Where rivers cross the fault, they often pass through gorges, and the associated waterfalls can be a barrier to salmon migration.

<span class="mw-page-title-main">Caledonian orogeny</span> Mountain building event caused by the collision of Laurentia, Baltica and Avalonia

The Caledonian orogeny was a mountain-building cycle recorded in the northern parts of the British Isles, the Scandinavian Caledonides, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the Laurentia and Baltica continents and the Avalonia microcontinent collided.

Extensional tectonics is concerned with the structures formed by, and the tectonic processes associated with, the stretching of a planetary body's crust or lithosphere.

<span class="mw-page-title-main">Transpression</span> Type of strike-slip deformation

In geology, transpression is a type of strike-slip deformation that deviates from simple shear because of a simultaneous component of shortening perpendicular to the fault plane. This movement ends up resulting in oblique shear. It is generally very unlikely that a deforming body will experience "pure" shortening or "pure" strike-slip. The relative amounts of shortening and strike-slip can be expressed in the convergence angle alpha which ranges from zero to 90 degrees. During shortening, unless material is lost, transpression produces vertical thickening in the crust. Transpression that occurs on a regional scale along plate boundaries is characterized by oblique convergence. More locally, transpression occurs within restraining bends in strike-slip fault zones.

The Orcadian Basin is a sedimentary basin of Devonian age that formed mainly as a result of extensional tectonics in northeastern Scotland after the end of the Caledonian orogeny. During part of its history, the basin was filled by a lake now known as Lake Orcadie. In that lacustrine environment, a sequence of finely bedded sedimentary rocks was deposited, containing well-preserved fish fossils, with alternating layers of mudstone and coarse siltstone to very fine sandstone. These flagstones split easily along the bedding and have been used as building material for thousands of years. The deposits of the Orcadian Basin form part of the Old Red Sandstone (ORS). The lithostratigraphic terms lower, middle and upper ORS, however, do not necessarily match exactly with sediments of lower, middle and upper Devonian age, as the base of the ORS is now known to be in the Silurian and the top in the Carboniferous.

The Walker Lane is a geologic trough roughly aligned with the California/Nevada border southward to where Death Valley intersects the Garlock Fault, a major left lateral, or sinistral, strike-slip fault. The north-northwest end of the Walker Lane is between Pyramid Lake in Nevada and California's Lassen Peak where the Honey Lake Fault Zone, the Warm Springs Valley Fault, and the Pyramid Lake Fault Zone meet the transverse tectonic zone forming the southern boundary of the Modoc Plateau and Columbia Plateau provinces. The Walker Lane takes up 15 to 25 percent of the boundary motion between the Pacific plate and the North American plate, the other 75 percent being taken up by the San Andreas Fault system to the west. The Walker Lane may represent an incipient major transform fault zone which could replace the San Andreas as the plate boundary in the future.

<span class="mw-page-title-main">Dead Sea Transform</span> Fault system between the African and Arabian plates

The Dead Sea Transform (DST) fault system, also sometimes referred to as the Dead Sea Rift, is a series of faults that run for about 1,000 km from the Maraş triple junction to the northern end of the Red Sea Rift. The fault system forms the transform boundary between the African plate to the west and the Arabian plate to the east. It is a zone of left lateral (sinistral) displacement, signifying the relative motions of the two plates. Both plates are moving in a general north-northeast direction, but the Arabian plate is moving faster, resulting in the observed left lateral motions along the fault of approximately 107 km at its southern end. A component of extension is also present in the southern part of the transform, which has contributed to a series of depressions, or pull-apart basins, forming the Gulf of Aqaba, Dead Sea, Sea of Galilee, and Hula basins. A component of shortening affects the Lebanon restraining bend, leading to uplift on both sides of the Beqaa valley. There is local transtension in the northernmost part of the fault system, forming the Ghab pull-apart basin. The southern part of the fault system runs roughly along the political border of Lebanon and Israel on its western side, and southern Syria and Jordan on the eastern side.

<span class="mw-page-title-main">856 Damghan earthquake</span> Earthquake in Iran

The 856 Damghan earthquake or the 856 Qumis earthquake occurred on 22 December 856. The earthquake had an estimated magnitude of 7.9, and a maximum intensity of X (Extreme) on the Mercalli intensity scale. The meizoseismal area extended for about 350 kilometres (220 mi) along the southern edge of the eastern Alborz mountains of present-day Iran including parts of Tabaristan and Gorgan. The earthquake's epicenter is estimated to be close to the city of Damghan, which was then the capital of the Persian province of Qumis. It caused approximately 200,000 deaths and is listed by the USGS as the sixth deadliest earthquake in recorded history. This death toll has been debated.

<span class="mw-page-title-main">1911 Kebin earthquake</span> Earthquake in Kazakhstan on 3 January 1911

The 1911 Kebin earthquake, or Chon-Kemin earthquake, struck Russian Turkestan on 3 January. Registering at a moment magnitude of 8.0, it killed 452 people, destroyed more than 770 buildings in Almaty, Kazakhstan, and resulted in 125 miles (201 km) of surface faulting in the valleys of Chon-Kemin, Chilik and Chon-Aksu.

<span class="mw-page-title-main">1927 Gulang earthquake</span> 1927 severe earthquake centered near Gulang, Gansu Province, China

The 1927 Gulang earthquake occurred at 06:32 a.m. on 23 May. This 7.6 magnitude event had an epicenter near Gulang, Gansu in the Republic of China. There were 40,912 deaths. It was felt up to 700 km (435 mi) away.

<span class="mw-page-title-main">1932 Ierissos earthquake</span> Severe earthquake on Chalkidiki peninsula, Greece

The 1932 Ierissos earthquake occurred at 19:20 on 26 September. It caused severe damage in Ierissos, Greece and the surrounding part of the Chalkidiki peninsula, with 161–491 casualties reported.

<span class="mw-page-title-main">Wairarapa Fault</span> Active seismic fault in New Zealand

The Wairarapa Fault is an active seismic fault in the southern part of the North Island of New Zealand. It is a dextral strike-slip fault with a component of uplift to the northwest as expressed by the Rimutaka Range. It forms part of the North Island Fault System, which accommodates the transfer of displacement along the oblique convergent boundary between the Indo-Australian plate and Pacific plate.

<span class="mw-page-title-main">Nordfjord-Sogn Detachment</span> Zone of deformed rocks in Norway

The Nordfjord—Sogn Detachment (NSD) is a major extensional shear zone in Norway up to 6 km in thickness, which extends about 120 km along strike from Nordfjord to Sognefjord, bringing Devonian continental coarse clastic sedimentary rocks into close contact with eclogite facies metamorphic rocks of the Western Gneiss Region. It formed towards the end of the Caledonian Orogeny and was mainly active during the Devonian. It has an estimated displacement of at least 70 km and possibly as much as 110 km. It was reactivated during the Mesozoic and may have influenced the development of fault structures in the North Sea rift basin.

The Cedar Mountain earthquake of 1932 was one of the largest seismic events in the US state of Nevada. The Ms 7.3 earthquake struck at Cedar Mountain in Western Nevada. Shaking was felt as far as Oregon, Southern California, and the Rocky Mountains area. Nevada is the third most seismically active state in the United States due to ongoing rifting occurring within the North American plate. Extension or thinning of the crust has resulted in numerous faults accommodating strain, at the same time, producing earthquakes. Since the earthquake occurred in a remote part of the state, damage was limited and no deaths were reported.

A major earthquake occurred during the rule of the Qing dynasty in Shandong Province on July 25, 1668. It had an estimated magnitude of Ms 8.5, making it the largest historical earthquake in East China, and one of the largest to occur on land. An estimated 43,000 to 50,000 people were killed, and its effects were widely felt. Its epicenter may have been located between Ju and Tancheng counties, northeast of the prefecture-level city of Linyi in southern Shandong.

<span class="mw-page-title-main">Oblique subduction</span> Tectonic process

Oblique subduction is a form of subduction for which the convergence direction differs from 90° to the plate boundary. Most convergent boundaries involve oblique subduction, particularly in the Ring of Fire including the Ryukyu, Aleutian, Central America and Chile subduction zones. In general, the obliquity angle is between 15° and 30°. Subduction zones with high obliquity angles include Sunda trench and Ryukyu arc.

The 1997 Bojnurd earthquake occurred on 4 February at 14:07 IRST in Iran. The epicenter of the Mw 6.5 earthquake was in the Kopet Dag mountains of North Khorasan, near the Iran–Turkmenistan border, about 579 km (360 mi) northeast of Tehran. The earthquake is characterized by shallow strike-slip faulting in a zone of active faults. Seismic activity is present as the Kopet Dag is actively accommodating tectonics through faulting. The earthquake left 88 dead, 1,948 injured, and affected 173 villages, including four which were destroyed. Damage also occurred in Shirvan and Bojnord counties. The total cost of damage was estimated to be over US$ 30 million.

<span class="mw-page-title-main">Moinian</span> Geological rock formation in Scotland

The Moinian or just the Moine, formerly the Moine Supergroup, is a sequence of Neoproterozoic metasediments that outcrop in the Northwest Highlands between the Moine Thrust Belt to the northwest and the Great Glen Fault to the southeast and one part of the Grampian Highlands to the southeast of the fault. It takes its name from A' Mhòine, a peat bog in northern Sutherland.

References

  1. 1 2 Stewart, M.; Strachan, R.A.; Holdsworth, R.E. (1999). "Structure and early kinematic history of the Great Glen Fault Zone, Scotland". Tectonics. 18 (2): 326–342. Bibcode:1999Tecto..18..326S. doi: 10.1029/1998TC900033 .
  2. Redfern, Ron (November 2001). Origins: The Evolution of Continents, Oceans and Life. University of Oklahoma Press. pp. 82–83. ISBN   978-0-8061-3359-1.
  3. "Great Glen Fault". Gazetteer for Scotland. 2016.
  4. 1 2 3 "Post-glacial activity and earthquakes of the Great Glen Fault (Scotland)".
  5. "The Geological Society of London – The Great Glen Fault, Scotland". geolsoc.org.uk.
  6. Stewart, M; Holdsworth, R. E.; Strachan, R. A. (15 May 2000). "Deformation processes and weakening mechanisms within the frictional–viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland". Journal of Structural Geology. 22 (5): 543–560. Bibcode:2000JSG....22..543S. doi:10.1016/S0191-8141(99)00164-9.
  7. Stewart, M.; Strachan, R. A. (1999). "Structure and early kinemtic history of the Great Glen Fault Zone, Scotland". Tectonics. 18 (2): 326–42. Bibcode:1999Tecto..18..326S. doi:10.1029/1998TC900033.
  8. Davison, Charles (26 September 1901). "The Inverness Earthquake of September 18". Nature. 64 (1665): 527. doi:10.1038/064527b0.

Further reading

57°05′N4°46′W / 57.08°N 4.76°W / 57.08; -4.76