Geology of Turkey

Last updated

Map of earthquakes in Turkey 1900-2023 Map of earthquakes in Turkey 1900-2023.svg
Map of earthquakes in Turkey 1900–2023

The geology of Turkey is the product of a wide variety of tectonic processes that have shaped Anatolia over millions of years, a process which continues today as evidenced by frequent earthquakes and occasional volcanic eruptions.

Contents

Topographic map of Turkey Turkey topo.jpg
Topographic map of Turkey

Turkey's varied landscapes are the product of a wide variety of tectonic processes that have shaped Anatolia over millions of years and continue today as evidenced by frequent earthquakes and occasional volcanic eruptions. Except for a relatively small portion of its territory along the Syrian border that is a continuation of the Arabian Platform, Turkey geologically is part of the great Alpide belt that extends from the Atlantic Ocean to the Himalaya Mountains. This belt was formed during the Paleogene Period, as the Arabian, African, and Indian continental plates began to collide with the Eurasian plate. This process is still at work today as the African plate converges with the Eurasian plate and the Anatolian plate escapes towards the west and southwest along strike-slip faults. These are the North Anatolian Fault Zone, which forms the present-day plate boundary of Eurasia near the Black Sea coast, and the East Anatolian Fault Zone, which forms part of the boundary of the North Arabian plate in the southeast. As a result, Turkey lies on one of the world's seismically most active regions.[ citation needed ]

However, many of the rocks exposed in Turkey were formed long before this process began. Turkey contains outcrops of Precambrian rocks, (more than 520 million years old; Bozkurt et al., 2000). The earliest geological history of Turkey is poorly understood, partly because of the problem of reconstructing how the region has been tectonically assembled by plate motions. Turkey can be thought of as a collage of different pieces (possibly terranes) of ancient continental and oceanic lithosphere stuck together by younger igneous, volcanic, and sedimentary rocks.

Istanbul and the Bosphorus Istanbul and Bosporus big.jpg
Istanbul and the Bosphorus

During the Mesozoic era (about 250 to 66 million years ago) a large ocean (Tethys Ocean), floored by oceanic lithosphere existed in-between the supercontinents of Gondwana and Laurasia (which lay to the south and north respectively; Robertson & Dixon, 2006). This large oceanic plate was consumed at subduction zones (see subduction zone). At the subduction trenches the sedimentary rock layers that were deposited within the prehistoric Tethys Ocean buckled, were folded, faulted, and tectonically mixed with huge blocks of crystalline basement rocks of the oceanic lithosphere. These blocks form a very complex mixture or mélange of rocks that include mainly serpentinite, basalt, dolerite and chert (e.g. Bergougnan, 1975). The Eurasian margin, now preserved in the Pontides (the Pontic Mountains along the Black Sea coast), is thought to have been geologically similar to the Western Pacific region today (e.g. Rice et al., 2006). Volcanic arcs (see volcanic arc) and backarc basins (see back-arc basin) formed and were emplaced onto Eurasia as ophiolites (see ophiolite) as they collided with microcontinents (literally relatively small plates of continental lithosphere; e.g. Ustaomer and Robertson, 1997). These microcontinents had been pulled away from the Gondwanan continent further south. Turkey is therefore made up of several different prehistorical microcontinents.[ citation needed ]

During the Cenozoic folding, faulting, and uplifting, accompanied by volcanic activity and intrusion of igneous rocks was related to major continental collision between the larger Arabian and Eurasian plates (e.g. Robertson & Dixon, 1984).

Present-day earthquakes range from barely perceptible tremors to major movements measuring five or higher on the open-ended Richter scale. Turkey's most severe earthquake in the twentieth century occurred in Erzincan on the night of December 28–29, 1939; it devastated most of the city and caused an estimated 160,000 deaths. Earthquakes of moderate intensity often continue with sporadic aftershocks over periods of several days or even weeks. The most earthquake-prone part of Turkey is an arc-shaped region stretching from the general vicinity of Kocaeli to the area north of Lake Van on the border with Armenia and Georgia.

Fault lines and earthquakes Slip-dist.png
Fault lines and earthquakes

Turkey's terrain is structurally complex. A central massif composed of uplifted blocks and downfolded troughs, covered by recent deposits and giving the appearance of a plateau with rough terrain, is wedged between two folded mountain ranges that converge in the east. True lowlands are confined to the Ergene Ovası (Ergene Plain) in Thrace, extending along rivers that discharge into the Aegean Sea or the Sea of Marmara, and to a few narrow coastal strips along the Black Sea and Mediterranean Sea coasts.[ citation needed ]

Nearly 85% of the land is at an elevation of at least 450 meters; the average and median altitude of the country is 1,332 and 1,128 meters, respectively. In Asiatic Turkey, flat or gently sloping land is rare and largely confined to the deltas of the Kızıl River, the coastal plains of Antalya and Adana, and the valley floors of the Gediz River and the Büyükmenderes River, and some interior high plains in Anatolia, mainly around Tuz Gölü (Salt Lake) and Konya Ovası (Konya Plain). Moderately sloping terrain is limited almost entirely outside Thrace to the hills of the Arabian Platform along the border with Syria.

More than 80% of the land surface is rough, broken, and mountainous, and therefore is of limited agricultural value (see Agriculture, ch. 3). The terrain's ruggedness is accentuated in the eastern part of the country, where the two mountain ranges converge into a lofty region with a median elevation of more than 1,500 meters, which reaches its highest point along the borders with Armenia, Azerbaijan, and Iran. Turkey's highest peak, Mount Ararat (Ağrı Dağı) – 5,137 meters high – is situated near the point where the boundaries of the four countries meet.

Background

Turkey's terrain is structurally complex. A central massif composed of uplifted blocks and downfolded troughs, covered by recent deposits and giving the appearance of a plateau with rough terrain, is wedged between two folded mountain ranges that converge in the east. True lowland is confined to the plain of the Ergene river in Thrace, extending along rivers that discharge into the Aegean Sea or the Sea of Marmara, and to a few narrow coastal strips along the Black Sea and Mediterranean Sea coasts.[ citation needed ]

Nearly 85% of the land is at an elevation of at least 450 meters; the median altitude of the country is 1,128 meters. In Asiatic Turkey, flat or gently sloping land is rare and largely confined to the deltas of the Kızıl River, the coastal plains of Antalya and Adana, and the valley floors of the Gediz River and the Büyük Menderes River, and some interior high plains in Anatolia, mainly around Tuz Gölü (Salt Lake) and Konya Ovası (Konya Basin). Moderately sloping terrain is limited almost entirely outside Thrace to the hills of the Arabian Platform along the border with Syria.

More than 80% of the land surface is rough, broken, and mountainous, and therefore is of limited agricultural value. The terrain's ruggedness is accentuated in the eastern part of the country, where the two mountain ranges converge into a lofty region with a median elevation of more than 1,500 meters, which reaches its highest point along the borders with Armenia, Azerbaijan, and Iran. Turkey's highest peak, Mount Ararat (Ağrı Dağı)—about 5,166 meters high—is situated near the point where the boundaries of the four countries meet.

Geological history

The earliest geological history of Turkey is poorly understood, partly because these oldest rocks in the region are involved into younger deformation phases that hindered their evolution. This created problem of reconstructing how the region has been tectonically assembled by plate motions. Turkey can be thought of as a collage of different continental pieces and remnants of oceanic lithospheric rocks amalgamated together by younger tectonic processes that involve accumulation of igneous (both plutonic and volcanic) and sedimentary rocks.

Plate tectonics

Tectonic plates in Turkey; the Anatolian sub-plate, the African plate, the Arabian plate, and the Eurasian plate. Turkey-faults-platenames.svg
Tectonic plates in Turkey; the Anatolian sub-plate, the African plate, the Arabian plate, and the Eurasian plate.

Except for a relatively small portion of its territory along the Syrian border that is a continuation of the Arabian plate, Turkey geologically is part of the great Alpide belt that extends from the Atlantic Ocean to the Himalaya Mountains. This belt was formed during the Cenozoic Era (about 66 to 1.6 million years ago), as the Arabian, African, and Indian continental plates began to collide with the Eurasian plate. This process is still at work today as the African plate converges with the Eurasian plate and the Anatolian sub-plate escapes towards the west and southwest along strike-slip faults. These are the North Anatolian Fault Zone, which forms the present day plate boundary of Eurasia near the Black Sea coast and, the East Anatolian Fault Zone, which forms part of the boundary of the North Arabian plate in the southeast. As a result of this plate tectonics configuration, Turkey is one of the world's more active earthquake and volcanic regions. [1]

The Anatolian plate, together with the Aegean-Peloponnesus block, is located near the centre of a very wide region, including the Arabian plate with the adjacent Zagros Mountains and central Iran, that moves in a circulatory pattern at a relatively fast rate of 20 mm/yr. The rate of this counter-clockwise motion increases near the Hellenic Trench system south of Turkey and decreases away from it (i.e. the Eurasian and African plates move at a rate of 5 mm/yr), resulting in internal deformations in several areas, including central and eastern Anatolia, south-western Aegean-Peloponnesus, Lesser Caucasus, and central Iran. The dominant process in the region is the subduction of the African plate beneath the Hellenic Trench, and the deformation in the entire African-Arabian-Eurasian collision zone is most likely driven by the slab roll-back of the subducting African plate in the East Mediterranean. [2] This process is further fuelled by slab-pull forces in the Makran Trench in the Gulf of Oman where the Arabian plate is subducting under Eurasia. A response to this tectonic maelstrom is the rifting in the Red Sea and Gulf of Aden which will separate Arabia from Africa. [3]

The tomography of the velocity propagation distributions of the P_n seismic waves both in an isotropic and anisotropic conditions, compared with the lateral variations of that velocity has highlighted the physical properties of the uppermost mantle and crustal thickness of the Earth. A study analyzed 700 earthquakes occurred in Turkey from 1999 to 2010 with magnitude degree major than 4.0 and the related 50.000 Pn first arrivals recorded by 832 seismic stations at a distance range of 180–1500 km from the epicenter. The tomography highlighted that "Pn velocities are found to be lowest in eastern Turkey (<7.6 km s-1) and highest in the eastern Mediterranean Sea and Zagros Suture (>8.3 km s-1). Large Pn anisotropy is observed in the Aegean, central Anatolia and along the southern coast of Anatolia. [...] Large crustal thicknesses are observed along the Dinarides-Hellenides and along the southern coast of Anatolia." [4]

Rocks

View of Cappadocia landscape View of Cappadocia edit.jpg
View of Cappadocia landscape

Many of the rocks exposed in Turkey were formed long before this process began. Turkey contains outcrops of Precambrian rocks, (more than 540 million years old). [5]

During the Mesozoic era (about 250 to 66 million years ago) a large ocean (Tethys Ocean), floored by oceanic lithosphere existed in-between the supercontinents of Gondwana and Laurasia (which lay to the south and north respectively). [6] This large oceanic plate was consumed at subduction zones. At the subduction trenches the sedimentary rock layers that were deposited within the prehistoric Tethys Ocean were folded, faulted and tectonically mixed with huge blocks of crystalline basement rocks of the oceanic lithosphere. These blocks form a very complex mixture or mélange of rocks that include mainly serpentinite, basalt, dolerite, and chert. [7] The Eurasian margin, now preserved in the Pontides (the Pontic Mountains along the Black Sea coast), is thought to have been geologically similar to the Western Pacific region today. [8] Volcanic arcs and back-arc basins formed and were emplaced onto Eurasia as ophiolites as they collided with microcontinents (literally relatively small plates of continental lithosphere). [9] These microcontinents had been pulled away from the Gondwanan continent further south. Turkey is therefore made up from several different prehistorical microcontinents.[ citation needed ]

During the Cenozoic (Tertiary about 66 to 1.6 million years) folding, faulting and uplifting, accompanied by volcanic activity and intrusion of igneous rocks was related to major continental collision between the larger Arabian and Eurasian plates. [10] Pamukkale terraces are made of travertine, a sedimentary rock deposited by mineral water from hot springs. The area is famous for a carbonate mineral left by the flowing of thermal spring water. [11] [12]

Earthquakes

Turkey's most severe earthquake in the twentieth century occurred in Erzincan on the night of 1939-12-27; it devastated most of the city and caused an estimated 30,000 deaths. Earthquakes of moderate intensity often continue with sporadic aftershocks over periods of several days or even weeks. Seismicity in Turkey is more likely to happen in the North Anatolian Fault Zone, East Anatolian Fault Zone and in the subduction region of the Aegean Plate between the Anatolian plate.

See also

Notes

  1. Kaymakci et al., 2010
  2. Biryol et al., 2011
  3. Reilinger et al. 2006 , Abstract; Fig. 2, p. 33, Fig. 3, p. 34
  4. Ahu Kömeç Mutlu; Hayrullah Karabulut (December 1, 2011). "Anisotropic Pn tomography of Turkey and adjacent regions". Geophysical Journal International . 187 (3). Oxford University Press: 1743–1758. Bibcode:2011GeoJI.187.1743M. doi: 10.1111/j.1365-246X.2011.05235.x . ISSN   1365-246X. OCLC   5137621576.
  5. Bozkurt et al., 2000
  6. Şengör and Yılmaz, 1981
  7. Okay and Tüysüz, 1999
  8. Kaymakci, 2000
  9. Ustaomer and Robertson, 1997
  10. Robertson & Dixon, 1984
  11. Scheffel, Richard L.; Wernet, Susan J., eds. (1980). Natural Wonders of the World. Reader's Digest Association, Inc. p. 286. ISBN   978-0-89577-087-5.
  12. "Hierapolis-Pamukkale World Heritage Site". UNESCO World Heritage Center. Retrieved 17 January 2022.

Related Research Articles

<span class="mw-page-title-main">Geography of Turkey</span>

The Anatolian side of Turkey is the largest portion in the country that bridges southeastern Europe and west Asia. East Thrace, the European portion of Turkey comprises 3% of the landmass but over 15% of the population. East Thrace is separated from Asia Minor, the Asian portion of Turkey, by the Bosporus, the Sea of Marmara and the Dardanelles. İskilip, Çorum province, is considered to be the geographical center of Earth.Turkey is very vulnerable to earthquakes.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at the convergent boundaries between tectonic plates. Where one tectonic plate converges with a second plate, the heavier plate dives beneath the other and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

Obduction is a geological process whereby denser oceanic crust is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate. When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction. Obduction, which is less common, normally occurs in plate collisions at orogenic belts or back-arc basins.

<span class="mw-page-title-main">Transform fault</span> Plate boundary where the motion is predominantly horizontal

A transform fault or transform boundary, is a fault along a plate boundary where the motion is predominantly horizontal. It ends abruptly where it connects to another plate boundary, either another transform, a spreading ridge, or a subduction zone. A transform fault is a special case of a strike-slip fault that also forms a plate boundary.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Eurasian plate</span> Tectonic plate which includes most of Eurasia

The Eurasian plate is a tectonic plate that includes most of Eurasia, with the notable exceptions of the Arabian Peninsula, the Indian subcontinent, and the area east of the Chersky Range in eastern Siberia. It also includes oceanic crust extending westward to the Mid-Atlantic Ridge and northward to the Gakkel Ridge.

<span class="mw-page-title-main">Arabian plate</span> Minor tectonic plate

The Arabian plate is a minor tectonic plate in the Northern and Eastern Hemispheres.

<span class="mw-page-title-main">Anatolian sub-plate</span> Continental tectonic plate comprising most of the Anatolian Peninsula (Asia Minor)

The Anatolian sub-plate is a continental tectonic plate that is separated from the Eurasian plate and the Arabian plate by the North Anatolian Fault and the East Anatolian Fault respectively. Most of the country of Turkey is located on the Anatolian plate. Most significant earthquakes in the region have historically occurred along the northern fault, such as the 1939 Erzincan earthquake. The devastating 2023 Turkey–Syria earthquakes occurred along the active East Anatolian Fault at a strike-slip fault where the Arabian plate is sliding past the Anatolian plate horizontally.

<span class="mw-page-title-main">Geology of Japan</span>

The islands of Japan are primarily the result of several large ocean movements occurring over hundreds of millions of years from the mid-Silurian to the Pleistocene, as a result of the subduction of the Philippine Sea Plate beneath the continental Amurian Plate and Okinawa Plate to the south, and subduction of the Pacific Plate under the Okhotsk Plate to the north.

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Cimmeria (continent)</span> Ancient string of microcontinents that rifted from Gondwana

Cimmeria was an ancient continent, or, rather, a string of microcontinents or terranes, that rifted from Gondwana in the Southern Hemisphere and was accreted to Eurasia in the Northern Hemisphere. It consisted of parts of present-day Turkey, Iran, Afghanistan, Pakistan, Tibet, China, Myanmar, Thailand, and Malaysia. Cimmeria rifted from the Gondwanan shores of the Paleo-Tethys Ocean during the Early Permian and as the Neo-Tethys Ocean opened behind it, during the Permian, the Paleo-Tethys closed in front of it. Because the different chunks of Cimmeria drifted northward at different rates, a Meso-Tethys Ocean formed between the different fragments during the Cisuralian. Cimmeria rifted off Gondwana from east to west, from Australia to the eastern Mediterranean. It stretched across several latitudes and spanned a wide range of climatic zones.

<span class="mw-page-title-main">Aegean Sea plate</span> A small tectonic plate in the eastern Mediterranean Sea

The Aegean Sea plate is a small tectonic plate located in the Eastern Mediterranean under Southern Greece and western Turkey. Its southern edge is the Hellenic subduction zone south of Crete, where the African plate is being swept under the Aegean Sea plate. Its northern margin is a divergent boundary with the Eurasian plate.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Philippine Mobile Belt</span> Tectonic boundary

In the geology of the Philippines, the Philippine Mobile Belt is a complex portion of the tectonic boundary between the Eurasian plate and the Philippine Sea plate, comprising most of the country of the Philippines. It includes two subduction zones, the Manila Trench to the west and the Philippine Trench to the east, as well as the Philippine fault system. Within the Belt, a number of crustal blocks or microplates which have been shorn off the adjoining major plates are undergoing massive deformation.

<span class="mw-page-title-main">Hellenic Trench</span> Long narrow depression bordering the Aegean Sea to the south

The Hellenic Trench (HT) is an oceanic trough located in the forearc of the Hellenic arc, an arcuate archipelago on the southern margin of the Aegean Sea plate, or Aegean Plate, also called Aegea, the basement of the Aegean Sea. The HT begins in the Ionian Sea near the mouth of the Gulf of Corinth and curves to the south, following the margin of the Aegean Sea. It passes close to the south shore of Crete and ends near the island of Rhodes just offshore Anatolia.

<span class="mw-page-title-main">Hellenic arc</span> Mountain chain located on the southern margin of the Aegean Sea plate

The Hellenic arc or Aegean arc is an arcuate mountain chain of the southern Aegean Sea located on the southern margin of the Aegean Sea plate. Geologically it results from the subduction of the African plate under it along the Hellenic subduction zone. The Hellenic Trench trends parallel to its southern side. The Aegean Sea plate, a microplate, is often considered part of the Eurasian plate from which it is in the process of diverging. The arc itself is mainly marine, the mountaintops appearing as islands in the Ionian Sea, Crete and its environs, or in the Dodecanese group. It encroaches on mainland terrain in the Peloponnesus, on Crete, on Rhodes, and on the southern coast of Anatolia, thus being encompassed by both Greece and Turkey.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

<span class="mw-page-title-main">2017 Aegean Sea earthquake</span> Earthquake in Greece and Turkey

On 21 July 2017, a large earthquake measuring 6.6 on the moment magnitude scale struck right near Bodrum, a popular town of tourism in Turkey, killing 2 and injuring hundreds. Mostly referenced as the 2017 Bodrum–Kos earthquake, this earthquake generated a tsunami which was one of the largest tsunamis in the Mediterranean Sea region.

<span class="mw-page-title-main">Subduction tectonics of the Philippines</span>

The subduction tectonics of the Philippines is the control of geology over the Philippine archipelago. The Philippine region is seismically active and has been progressively constructed by plates converging towards each other in multiple directions. The region is also known as the Philippine Mobile Belt due to its complex tectonic setting.

<span class="mw-page-title-main">Hellenic subduction zone</span>

The Hellenic subduction zone (HSZ) is the convergent boundary between the African plate and the Aegean Sea plate, where oceanic crust of the African is being subducted north–northeastwards beneath the Aegean. The southernmost and shallowest part of the zone is obscured beneath the deformed thick sedimentary sequence that forms the Mediterranean Ridge accretionary complex. It has a well-defined Wadati–Benioff zone of seismicity, which demonstrates the relatively shallow dip of its southern part, which increases markedly to the north of the non-volcanic part of the Hellenic arc. The descending slab has been imaged using seismic tomography down to the top of the mantle transition zone at 410 km depth.

References

Further reading