Picuris orogeny

Last updated
Pilar Formation outcrop with white metatuff beds. Dating of these beds provided some of the first evidence for the Picuris orogeny. Pilar Formation outcrop.jpg
Pilar Formation outcrop with white metatuff beds. Dating of these beds provided some of the first evidence for the Picuris orogeny.

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. [1] [2] The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism. [3] [4] [5] [6] [7]

Contents

Description

Age and isotope data show that southern North America is composed of a series of northeast-trending provinces representing island arc terranes accreted onto the 1800 Mya core of Laurentia. [8] These are the Yavapai province (1800–1700 Mya), the Mazatzal province (1700–1650 Mya), the Granite-Rhyolite province (1500–1300 Mya), [9] and the Llano-Grenville province (1300–1000 Mya). Each is interpreted as juvenile crust of an island arc, together with smaller amounts of reworked older crust, that accreted to Laurentia in an orogenic pulse accompanied by pluton emplacement. The plutons sutured new and existing orogens together and helped convert the juvenile terranes to mature crust. The orogen pulses are identified as the Yavapai orogeny at 1710–1680 Mya, the Mazatzal orogeny at 1650–1600 Ga, the Picuris orogeny at 1450–1300 Mya, [10] and the Grenville orogeny at 1.30–0.95 Mya. [7]

Some of the orogens were accompanied by slab rollback. This created short-lived extensional basins that accumulated sand and high-silica volcanic debris to form Proterozoic quartzite-rhyolite successions. Subsequent convergent tectonics closed the basis and thrust imbricated the successions. [7]

The northeast-trending provinces are truncated by Neoproterozoic passive margins that indicate the orogenic system once extended much further. This part of the basis for the AUSWUS reconstruction of Rodinia, which places Australia adjacent to the southwestern US from 1800 to 1000 Mya. Other supporting evidence includes correspondence of 1450 and 1000 Ga paleomagnetic poles between Australia and Laurentia. [3] The northeastern extension of the orogenic belt would then correspond to the Gothian orogeny [11] in Baltica and the southwestern extension to the Albany-Fraser orogeny. [12] The close correspondence of detrital zircon ages and Hf isotope ages between the Mazazatl province and Australia supports this reconstruction. [13] However, the placement of Australia has been disputed on the basis of paleomagnetic data. [14] The SWEAT reconstruction places East Antarctica on the southwest extension of the Yavapai Province. [15]

Early evidence for a major tectonic event at around 1400 Mya was the presence of numerous batholiths of the age in the southwestern United States. These constitute over 20% of the entire exposed Precambrian surface in New Mexico and the Rocky Mountains. Much of the mid-continent from eastern New Mexico to the northeast is underlain by the 1450-1350 Granite-Rhyolite crustal province. However, this was long assumed to be an anorogenic event, possibly due to basaltic underplating. [16] Direct evidence for uplift in the form of sedimentation was lacking until detrital zircon geochronology established that some formations of the Vadito and Hondo Groups, long assumed to be Statherian in age, were actually Calymmian. [17]

The Berthoud orogeny of Colorado, which emplaced the Berthoud Plutonic Suite, took place in the same time frame as the Picuris Orogeny. [18]

Relationship to Mazatzal Orogeny

A number of quartzite-rhyolite successions previously associated with the Mazatal orogeny have been shown to contain both Paleoproterozoic and Mesoproterozoic formations, based on detrital zircon geochronology. [6] The younger formations define the Picuris orogeny at 1450–1300 Mya. [10] This has raised the question of whether the Mazatzal orogeny was actually distinct from the Picuris orogeny. [19]

Silver estimated the timing of the Mazatzal orogeny as between 1715 Mya and 1650 Mya. The end of the event was based on the U-Pb age of a post-tectonic granite located near Young, Arizona and folded rocks of the Alder Group (now recognized as a pre-1700 Ma succession of rock.) In contrast, Livingston's work in the Upper Salt River Canyon utilized Rb-Sr dating techniques to estimated the timing of the Mazatzal orogeny between 1425-1380 +/-100 Mya. [20] [21]

Further mapping in the 1970s and 1980s showed that the Mazatzal Group rested entirely an angular unconformity with sheeted dikes of the 1729 Mya Payson ophiolite and pre-1700 Mya Alder Group. Workers were unable to identify any ash layers directly within the Mazatzal Group needed to constrain the actual timing of folding and thrusting attributed to the Mazatzal orogeny. It was ultimately recognized that the granite near Young, Arizona, dated by Silver in 1965 was the best post-tectonic timing relationship between the pre-1700 Ma, deformed Alder Group and granite near Young. Redating of the granite in the late 1980s confirmed its age and the timing relationship between the folded Alder Group and granite. (The best age estimate is now 1664+/-17 Mya.) [19] However, this assumed that the deformation of the pre-1700 Ma Alder Group also included the northwest-directed folding and thrusting in the Mazatzal Group. [22] This discounted the significance of the obvious angular unconformity at the base of the Mazatzal Group.

New mapping and utilization of detrital zircon geochronology during the 2010s were able to constrain the age of the youngest sediments above the Mazatzal Group involved in the classic deformation of the Mazatzal orogeny. Detrital zircons from the Hopi Springs Shale in the northern Mazatzal Mountains yielded a maximum depositional age (MDA) of 1571 Mya. Similar sediments collected from a shale folded in the core of the Four Peaks synform yielded a MDA of 1580 Mya. In the Upper Salt River Canyon, overlying the White Ledges Formation (a correlative to the Mazatzal Group), sediments from the conformably overlying Yankee Joe and Blackjack Formations yielded MDA of ca. 1470 Mya. The entire sediment sequence of Redmond (1657 Mya), White Ledge, Yankee Joe, and Blackjack Formations were deformed sometime after 1470 Mya. The event buried the section to 6-10 km deep before it was intruded by the 1450 Ma Ruin Granite. [13] [23]

These timings are contemporaneous with the timing of deformation of the Picuris orogeny defined in north-central New Mexico. [17] However, there are indications of three distinct orogenic episodes at the Black Canyon of the Gunnison, with an exhumation surface separating Yavapai and Mazatzal events. [24] There is evidence from southern New Mexico of a collision between 1675 and 1655 Ma followed by crustal melting. [25] The Sandia, Manzano, and Los Pinos Mountains of central New Mexico contain 1.65-1.66 Ga plutons which are interpreted as a magmatic arc system in which plutons were intruding their own volcanic edifices and were also intruding developing syn-contractional, arc-related sedimentary basins. These are distinct from 1453-1456 plutons emplaced syntectonically during the Picuris orogeny. [26] The orogenies may be distinct but with the Picuris orogeny badly overprinting the earlier Mazatzal orogeny. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Mesoproterozoic</span> Second era of the Proterozoic Eon

The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era, but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

<span class="mw-page-title-main">Wyoming Craton</span> Craton in the west-central United States and western Canada

The Wyoming Craton is a craton in the west-central United States and western Canada – more specifically, in Montana, Wyoming, southern Alberta, southern Saskatchewan, and parts of northern Utah. Also called the Wyoming Province, it is the initial core of the continental crust of North America.

<span class="mw-page-title-main">Laurentia</span> A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Tectonic evolution of the Aravalli Mountains</span> Overview article

The Aravalli Mountain Range is a northeast-southwest trending orogenic belt in the northwest part of India and is part of the Indian Shield that was formed from a series of cratonic collisions. The Aravalli Mountains consist of the Aravalli and Delhi fold belts, and are collectively known as the Aravalli-Delhi orogenic belt. The whole mountain range is about 700 km long. Unlike the much younger Himalayan section nearby, the Aravalli Mountains are believed much older and can be traced back to the Proterozoic Eon. They are arguably the oldest geological feature on Earth. The collision between the Bundelkhand craton and the Marwar craton is believed to be the primary mechanism for the development of the mountain range.

<span class="mw-page-title-main">South China Craton</span> Precambrian continental block located in China

The South China Craton or South China Block is one of the Precambrian continental blocks in China. It is traditionally divided into the Yangtze Block in the NW and the Cathaysia Block in the SE. The Jiangshan–Shaoxing Fault represents the suture boundary between the two sub-blocks. Recent study suggests that the South China Block possibly has one more sub-block which is named the Tolo Terrane. The oldest rocks in the South China Block occur within the Kongling Complex, which yields zircon U–Pb ages of 3.3–2.9 Ga.

The Albany-Fraser orogeny was an orogenic event which created the Albany-Fraser Orogen in what is now Australia between 2.63 and 1.16 billion years ago, during the late Archean and Proterozoic. Tectonic history developed from isotope dating suggests that the orogeny occurred as the combined North Australia Craton-West Australia Craton collided with the East Antarctic-South Australian Craton. The Kepa Kurl Booya Province, including its component zones, the Fraser Zone, Nornalup Zone and Biranup Zone represents the crystalline basement of the orogen. Numerous theories and hypotheses have been presented about the orogeny. For example, in 2011 geochronology dating of 1.71 to 1.65 billion year old granite and gabbro intrusions in the Biranup Zone suggested craton margin rocks rather than a previously interrupted small terrane wedged against the Yilgarn Craton. In other cases, researchers attempting to reconstruct the supercontinent Rodinia suggested a possible connection between Australia-Antarctica and the proto-North American continent Laurentia, but in 2003 paleomagnetic data from the Albany-Fraser orogeny suggested that Australia and Laurentia were at different latitudes.

<span class="mw-page-title-main">Mazatzal orogeny</span> Mountain-building event in North America

The Mazatzal orogeny was an orogenic event in what is now the Southwestern United States from 1650 to 1600 Mya in the Statherian Period of the Paleoproterozoic. Preserved in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1700-1600 Mya age Mazatzal island arc terrane with the proto-North American continent. This was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Vadito Group</span> Group of geologic formations in New Mexico, US

The Vadito Group is a group of geologic formations that crops out in most of the Precambrian-cored uplifts of northern New Mexico. Detrital zircon geochronology and radiometric dating give a consistent age of 1700 Mya for the group, corresponding to the Statherian period.

<span class="mw-page-title-main">Hondo Group</span> Group of geologic formations in New Mexico, US

The Hondo Group is a group of geologic formations that crops out in most of the Precambrian-cored uplifts of northern New Mexico. Detrital zircon geochronology gives a maximum age for the lower Hondo Group of 1765 to 1704 million years (Mya), corresponding to the Statherian period.

<span class="mw-page-title-main">Ortega Formation</span> Geologic formation in New Mexico, US

The Ortega Formation is a geologic formation that crops out in most of the mountain ranges of northern New Mexico. Detrital zircon geochronology establishes a maximum age for the formation of 1690-1670 million years (Mya), in the Statherian period of the Precambrian.

<span class="mw-page-title-main">Piedra Lumbre Formation</span> Geologic formation in New Mexico, US

The Piedra Lumbre Formation is a geologic formation that crops out in the Picuris Mountains of northern New Mexico. Detrital zircon geochronology yields a maximum age of 1475 million years, corresponding to the Calymmian period.

<span class="mw-page-title-main">Marquenas Formation</span> Geologic formation in New Mexico, US

The Marquenas Formation is a geological formation that crops out in the Picuris Mountains of northern New Mexico. Detrital zircon geochronology gives it a maximum age of 1435 million years, corresponding to the Calymmian period.

<span class="mw-page-title-main">Trampas Group</span> Group of geologic formations in New Mexico, US

The Trampas Group is a group of geologic formations that crops out in the Picuris Mountains of northern New Mexico. Detrital zircon geochronology yields a maximum age of 1475 million years, corresponding to the Calymmian period.

<span class="mw-page-title-main">Abajo Formation</span> Geologic formation in New Mexico, US

The Abajo Formation is a geologic formation in the Los Pinos Mountains of central New Mexico. It was deposited about 1660 million years (Ma) ago, corresponding to the Statherian period.

<span class="mw-page-title-main">Mazatzal Group</span> Geologic formation in Arizona, US

The Mazatzal Group is a group of geologic formations that crops out in portions of central Arizona, US. Detrital zircon geochronology establishes a maximum age for the formation of 1660 to 1630 million years (Mya), in the Statherian period of the Precambrian. The group gives its name to the Mazatzal orogeny, a mountain-building event that took place between 1695 and 1630 Mya.

The White Ledges Formation is a geologic formation that crops out in central Arizona, US. Detrital zircon geochronology establishes a maximum age for the formation of 1726 million years (Mya), in the Statherian period of the Precambrian. The formation is typical of quartzites deposited around 1650 million years ago in the southwestern part of Laurentia, the ancient core of the North American continent.

The Yankee Joe Formation is a geological formation exposed in the Blackjack Mountains, Arizona, US. The age of the formation is between 1474 and 1436 million years, and detrital zircon geochronology of its sediments provides clues for reconstruction the supercontinent, Rodinia.

The Blackjack Formation is a geological formation exposed in the Blackjack Mountains, Arizona, US. The age of the formation is between 1474 and 1436 million years, and detrital zircon geochronology of its sediments provides clues for reconstruction the supercontinent, Rodinia.

References

  1. Daniel, Christoper G. and co-authors (2013). Making the case for the Picuris orogeny: Evidence for a 1500 to 1400 Ma orogenic event in the southwestern United States. Geological Society of America. p. 205. ISBN   9780813700335.
  2. Daniel, Christopher G. and co-authors (2013). "Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic (ca. 1490–1450 Ma) deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny". GSA Bulletin. p. 1423.
  3. 1 2 Karlstrom, Karl E; Åhäll, Karl-Inge; Harlan, Stephen S; Williams, Michael L; McLelland, James; Geissman, John W (1 October 2001). "Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia". Precambrian Research. 111 (1): 5–30. Bibcode:2001PreR..111....5K. doi:10.1016/S0301-9268(01)00154-1. ISSN   0301-9268 . Retrieved 19 April 2020.
  4. Karlstrom, Karl E. (1989). Early recumbent folding during Proterozoic orogeny in central Arizona. Geological Society of America. p. 156. ISBN   9780813722351.
  5. Magnani, M.B.; Miller, K.C.; Levander, A.; Karlstrom, K. (2004). "The Yavapai-Mazatzal boundary: A long-lived tectonic element in the lithosphere of southwestern North America". Geological Society of America Bulletin. 116 (9): 1137. Bibcode:2004GSAB..116.1137M. doi:10.1130/B25414.1 . Retrieved 19 April 2020.
  6. 1 2 Jones, James V. III; Daniel, Christopher G.; Frei, Dirk; Thrane, Kristine (2011). "Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA: New findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marqueñas Formation". Geosphere. 7 (4): 974–991. doi: 10.1130/GES00614.1 .
  7. 1 2 3 Whitmeyer, Steven; Karlstrom, Karl E. (2007). "Tectonic model for the Proterozoic growth of North America". Geosphere. 3 (4): 220. doi: 10.1130/GES00055.1 .
  8. Condie, Kent C. (1982). "Plate-tectonics model for Proterozoic continental accretion in the southwestern United States". Geology. 10 (1): 37. Bibcode:1982Geo....10...37C. doi:10.1130/0091-7613(1982)10<37:PMFPCA>2.0.CO;2.
  9. Bickford, M.E.; Van Schmus, W.R.; Karlstrom, K.E.; Mueller, P.A.; Kamenov, G.D. (August 2015). "Mesoproterozoic-trans-Laurentian magmatism: A synthesis of continent-wide age distributions, new SIMS U–Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions". Precambrian Research. 265: 286–312. Bibcode:2015PreR..265..286B. doi:10.1016/j.precamres.2014.11.024.
  10. 1 2 Daniel, C. G.; Pfeifer, L. S.; Jones, J. V.; McFarlane, C. M. (23 July 2013). "Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic (ca. 1490-1450 Ma) deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny". Geological Society of America Bulletin. 125 (9–10): 1423–1441. Bibcode:2013GSAB..125.1423D. doi:10.1130/B30804.1 . Retrieved 19 April 2020.
  11. Graversen, Ole; Pedersen, Svend (1999). "Timing of Gothian structural evolution in SE Norway: A Rb-Sr whole-rock age study" (PDF). Norsk Geologisk Tidsskrift . 79 (47–56): 47–56. doi:10.1080/002919699433906 . Retrieved 15 September 2015.
  12. Kirkland, C.J. and co-authors (2011). "On the edge: U–Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen". Precambrian Research. p. 223.
  13. 1 2 Doe, Michael F.; Jones, James V.; Karlstrom, Karl E.; Dixon, Brandon; Gehrels, George; Pecha, Mark (July 2013). "Using detrital zircon ages and Hf isotopes to identify 1.48–1.45Ga sedimentary basins and fingerprint sources of exotic 1.6–1.5Ga grains in southwestern Laurentia". Precambrian Research. 231: 409–421. Bibcode:2013PreR..231..409D. doi:10.1016/j.precamres.2013.03.002.
  14. Pisarevsky, S.A. and co-authors (2003). "Late Mesoproterozoic (ca 1.2 Ga) palaeomagnetism of the Albany–Fraser orogen: no pre-Rodinia Australia–Laurentia connection". Geophysical Journal International. p. F6.
  15. Goodge, J. W.; Vervoort, J. D.; Fanning, C. M.; Brecke, D. M.; Farmer, G. L.; Williams, I. S.; Myrow, P. M.; DePaolo, D. J. (11 July 2008). "A Positive Test of East Antarctica-Laurentia Juxtaposition Within the Rodinia Supercontinent". Science. 321 (5886): 235–240. Bibcode:2008Sci...321..235G. doi:10.1126/science.1159189. PMID   18621666. S2CID   11799613 . Retrieved 19 April 2020.
  16. Karlstrom, Karl E.; Amato, Jeffrey M.; Williams, Michael L.; Heizler, Matt; Shaw, Colin A.; Read, Adam S.; Bauer, Paul (2004). "Proterozoic tectonic evolution of the New Mexico region: A synthesis". New Mexico Geological Society Special Publication Series. 11: 1–35.
  17. 1 2 Daniel, Christopher G.; Pfeifer, Lily S.; Jones, James V III; McFarlane, Christopher M. (2013). "Detrital zircon evidence for non-Laurentian provenance, Mesoproterozoic (ca. 1490–1450 Ma) deposition and orogenesis in a reconstructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny". GSA Bulletin. 125 (9–10): 1423–1441. Bibcode:2013GSAB..125.1423D. doi:10.1130/B30804.1 . Retrieved 17 April 2020.
  18. Sims, P. K.; Stein, H. J. (1 October 2003). "Tectonic evolution of the Proterozoic Colorado province, Southern Rocky Mountains: A summary and appraisal". Rocky Mountain Geology. 38 (2): 183–204. doi:10.2113/gsrocky.38.2.183.
  19. 1 2 3 Mako, Calvin A.; Williams, Michael L.; Karlstrom, Karl E.; Doe, Michael F.; Powicki, David; Holland, Mark E.; Gehrels, George; Pecha, Mark (December 2015). "Polyphase Proterozoic deformation in the Four Peaks area, central Arizona, and relevance for the Mazatzal orogeny". Geosphere. 11 (6): 1975–1995. Bibcode:2015Geosp..11.1975M. doi: 10.1130/GES01196.1 .
  20. Livingston, D.E. (1969). Geochronology of older Precambrian rocks in Gila County, Arizona [Ph.D. thesis]. Tucson: University of Arizona. p. 224.
  21. Cox, Ro´nadh; Martin, Mark W.; Comstock, Jana C.; Dickerson, Laura S.; Ekstrom, Ingrid L.; Sammons, James H. (2002). "Sedimentology, stratigraphy, and geochronology of the Proterozoic Mazatzal Group, central Arizona" (PDF). GSA Bulletin. 114 (12): 1535–1549. Bibcode:2002GSAB..114.1535C. doi:10.1130/0016-7606(2002)114<1535:SSAGOT>2.0.CO;2 . Retrieved 18 April 2020.
  22. Karlstrom, K.E.; Doe, M.F.; Wessels, R.L.; Bowring, S.A.; Dann, J.C.; Williams, M.L. Gehrels, G.E.; Spencer, J.E. (eds.). "Juxtaposition of Proterozoic crustal blocks; 1.65-1.60 Ga Mazatzal Orogeny". Arizona Geological Society Special Paper. 7: 114–122.
  23. Doe, M.F. (2014). Reassessment of Paleo- and Mesoproterozoic basin sediments of Arizona: Implications for tectonic growth of southern Laurentia and global tectonic configurations [Ph.D. dissertaition]. Golden, Colorado: Colorado School of Mines.
  24. Jessup, Micah J.; Jones III, James V.; Karlstrom, Karl E.; Williams, Michael L.; Connelly, James N.; Heizler, Matthew T. (September 2006). "Three Proterozoic Orogenic Episodes and an Intervening Exhumation Event in the Black Canyon of the Gunnison Region, Colorado". The Journal of Geology. 114 (5): 555–576. Bibcode:2006JG....114..555J. doi:10.1086/506160. S2CID   53133582.
  25. Amato, Jeffrey M.; Ottenfeld, Chelsea F.; Howland, Colby R. (2018). "U-Pb geochronology of Proterozoic igneous and metasedimentary rocks in southern New Mexico: Post-collisional S-type granite magmatism" (PDF). New Mexico Geological Society Fall Field Conference Series. 69: 137–145. Retrieved 21 May 2020.
  26. Holland, Mark E.; Karlstrom, Karl E.; Grambling, Tyler A.; Heizler, Matthew T. (2016). "Geochronology of Proterozoic rocks of the Sandia-Manzano-Los Pinos Uplift: implications for the timing of crustal assembly of the southwestern United States" (PDF). New Mexico Geological Society Field Conference Series. 67: 161–168. Retrieved 26 May 2020.