Payson ophiolite

Last updated
Payson ophiolite
Stratigraphic range:
Statherian
Underlies Tonto Basin Supergroup
Overlies Larson Spring Formation
Lithology
Primary basalt, gabbro
Location
Coordinates 34°11′N111°20′W / 34.18°N 111.34°W / 34.18; -111.34
RegionFlag of Arizona.svg  Arizona
Arizona
CountryUnited States
Type section
Named for Payson, Arizona
Named byJ.C. Dann
Year defined1991
Usa edcp relief location map.png
Pink pog.svg
Payson ophiolite (the United States)
USA Arizona relief location map.svg
Pink pog.svg
Payson ophiolite (Arizona)

The Payson ophiolite is an ophiolite of Statherian age (late Paleoproterozoic) located near Payson, Arizona, US.

Contents

Description

The Payson ophiolite crops out south and west of the town of Payson, Arizona, in the Arizona transition zone between the Colorado Plateau and the Basin and Range. [1] It consists of a well-developed sheeted dyke complex that grades below into gabbroic rock and above into submarine volcanic rock. The whole sequence dips gently (by about 15 degrees) to the southwest. The ophiolite is exposed over a sizable area and is little deformed, with metamorphism limited to the lower greenschist facies. Much of the gabbro is essentially unaltered. [2]

The ophiolite is intruded by a sill of granitic rock, the Payson Granite, which conceals the deepest layers of the ophiolite, including the entire ultramafic mantle portion of the ophiolite. The deepest accessible layers are the gabbronorite of Round Valley. [2] Regionally, the ophiolite is thought to be overlain by the Tonto Basin Supergroup. [3]

Origin and Tectonics

The ophiolite is part of the Mazatzal block, a terrane 50 to 60 kilometers (31 to 37 mi) wide on the eastern end of the Arizona transition zone. The Payson ophiolite lies on a basement of granitic rock overlain by felsic volcanic and volcaniclastic rock of the Larson Spring Formation. This shows that the ophiolite was emplaced by rifting of an existing island arc, which likely produced a pull-apart basin. [2] [3]

Related Research Articles

<span class="mw-page-title-main">Rio Grande rift</span> Continental rift zone in North America

The Rio Grande rift is a north-trending continental rift zone. It separates the Colorado Plateau in the west from the interior of the North American craton on the east. The rift extends from central Colorado in the north to the state of Chihuahua, Mexico, in the south. The rift zone consists of four basins that have an average width of 50 kilometres (31 mi). The rift can be observed on location at Rio Grande National Forest, White Sands National Park, Santa Fe National Forest, and Cibola National Forest, among other locations.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain building process. An orogeny is an event that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Geology of the Himalayas</span> Origins and structure of the mountain range

The geology of the Himalayas is a record of the most dramatic and visible creations of the immense mountain range formed by plate tectonic forces and sculpted by weathering and erosion. The Himalayas, which stretch over 2400 km between the Namcha Barwa syntaxis at the eastern end of the mountain range and the Nanga Parbat syntaxis at the western end, are the result of an ongoing orogeny — the collision of the continental crust of two tectonic plates, namely, the Indian Plate thrusting into the Eurasian Plate. The Himalaya-Tibet region supplies fresh water for more than one-fifth of the world population, and accounts for a quarter of the global sedimentary budget. Topographically, the belt has many superlatives: the highest rate of uplift, the highest relief, among the highest erosion rates at 2–12 mm/yr, the source of some of the greatest rivers and the highest concentration of glaciers outside of the polar regions. This last feature earned the Himalaya its name, originating from the Sanskrit for "the abode of the snow".

<span class="mw-page-title-main">Arabian-Nubian Shield</span>

The Arabian-Nubian Shield (ANS) is an exposure of Precambrian crystalline rocks on the flanks of the Red Sea. The crystalline rocks are mostly Neoproterozoic in age. Geographically - and from north to south - the ANS includes parts of Israel, Jordan, Egypt, Saudi Arabia, Sudan, Eritrea, Ethiopia, Yemen, and Somalia. The ANS in the north is exposed as part of the Sahara Desert and Arabian Desert, and in the south in the Ethiopian Highlands, Asir province of Arabia and Yemen Highlands.

<span class="mw-page-title-main">Basement (geology)</span> Metamorphic or igneous rocks below a sedimentary platform or cover

In geology, basement and crystalline basement are crystalline rocks lying above the mantle and beneath all other rocks and sediments. They are sometimes exposed at the surface, but often they are buried under miles of rock and sediment. The basement rocks lie below a sedimentary platform or cover, or more generally any rock below sedimentary rocks or sedimentary basins that are metamorphic or igneous in origin. In the same way, the sediments or sedimentary rocks on top of the basement can be called a "cover" or "sedimentary cover".

<span class="mw-page-title-main">Big Burro Mountains</span>

The Big Burro Mountains are a moderate length 35-mile (56 km) long, mountain range located in central Grant County, New Mexico. The range's northwest-southeast 'ridgeline' is located 15 mi southwest of Silver City.

<span class="mw-page-title-main">Overprinting (geology)</span> Geological process that leaves marks altering the marks of an earlier process

Overprinting is a geological process that superimposes a set of characteristics on rock that partially obscure earlier characteristics. Examples include metamorphic overprinting, in which new structure, texture, or mineral composition is imposed on existing rock. For example, the Tauern window of Alps contains beds that were originally metamorphosed to eclogite but have since been overprinted to the blueschist and then the greenschist facies. Likewise, deformation associated with the Mazatzal orogeny in Arizona and New Mexico, US, was subsequently overprinted by deformation associated with the Picuris orogeny.

The geology of Eswatini formed beginning 3.6 billion years ago, in the Archean Eon of the Precambrian. Eswatini is the only country entirely underlain by the Kaapvaal Craton, one of the oldest pieces of stable continental crust and the only craton regarded as "pristine" by geologists, other than the Yilgarn Craton in Australia. As such, the country has very ancient granite, gneiss and in some cases sedimentary rocks from the Archean into the Proterozoic, overlain by sedimentary rocks and igneous rocks formed during the last 539 million years of the Phanerozoic as part of the Karoo Supergroup. Intensive weathering has created thick zones of saprolite and heavily weathered soils.

The geology of Arizona began to form in the Precambrian. Igneous and metamorphic crystalline basement rock may have been much older, but was overwritten during the Yavapai and Mazatzal orogenies in the Proterozoic. The Grenville orogeny to the east caused Arizona to fill with sediments, shedding into a shallow sea. Limestone formed in the sea was metamorphosed by mafic intrusions. The Great Unconformity is a famous gap in the stratigraphic record, as Arizona experienced 900 million years of terrestrial conditions, except in isolated basins. The region oscillated between terrestrial and shallow ocean conditions during the Paleozoic as multi-cellular life became common and three major orogenies to the east shed sediments before North America became part of the supercontinent Pangaea. The breakup of Pangaea was accompanied by the subduction of the Farallon Plate, which drove volcanism during the Nevadan orogeny and the Sevier orogeny in the Mesozoic, which covered much of Arizona in volcanic debris and sediments. The Mid-Tertiary ignimbrite flare-up created smaller mountain ranges with extensive ash and lava in the Cenozoic, followed by the sinking of the Farallon slab in the mantle throughout the past 14 million years, which has created the Basin and Range Province. Arizona has extensive mineralization in veins, due to hydrothermal fluids and is notable for copper-gold porphyry, lead, zinc, rare minerals formed from copper enrichment and evaporites among other resources.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

<span class="mw-page-title-main">Geology of Uzbekistan</span>

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

The geology of Cuba differs significantly from that of other Caribbean islands because of ancient 900 million year old Precambrian Proterozoic metamorphic rocks in the Santa Clara province and extensive Jurassic and Cretaceous outcrops.

<span class="mw-page-title-main">Mazatzal orogeny</span> Mountain-building event in North America

The Mazatzal orogeny was an orogenic event in what is now the Southwestern United States from 1650 to 1600 Mya in the Statherian Period of the Paleoproterozoic. Preserved in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1700-1600 Mya age Mazatzal island arc terrane with the proto-North American continent. This was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Picuris orogeny</span> Mountain-building event in what is now the Southwestern US

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Mazatzal Group</span> Geologic formation in Arizona, US

The Mazatzal Group is a group of geologic formations that crops out in portions of central Arizona, US. Detrital zircon geochronology establishes a maximum age for the formation of 1660 to 1630 million years (Mya), in the Statherian period of the Precambrian. The group gives its name to the Mazatzal orogeny, a mountain-building event that took place between 1695 and 1630 Mya.

<span class="mw-page-title-main">Yavapai Supergroup</span> Sequence of rock strata

The Yavapai Supergroup is a Paleoproterozoic supergroup of metavolcanic and metasedimentary rock strata, partially exposed in Arizona, US. The corresponding chronostratigraphic unit is the Yavapai Series, which locally defines an interval of geologic time. The Yavapai Supergroup gives its name to the Yavapai orogeny, a major mountain-building event that took place in the U.S. Southwest in the Paleoproterozoic.

The Alder Group is a group of geologic formations exposed in the Mazatzal Mountains of central Arizona, US. It dates to the Statherian Period of the Paleoproterozoic and records mountain-building events associated with the assembly of North America.

The White Ledges Formation is a geologic formation that crops out in central Arizona, US. Detrital zircon geochronology establishes a maximum age for the formation of 1726 million years (Mya), in the Statherian period of the Precambrian. The formation is typical of quartzites deposited around 1650 million years ago in the southwestern part of Laurentia, the ancient core of the North American continent.

<span class="mw-page-title-main">Geology of Kimberley (Western Australia)</span> Overview of geology of the Kimberley

The geology of the Kimberley, a region of Western Australia, is a rock record of early Proterozoic plate collision, orogeny and suturing between the Kimberley Craton and the Northern Australia Craton, followed by sedimentary basin formation from Proterozoic to Phanerozoic.

References

  1. Dann, Jesse C. (1 June 1991). "Early Proterozoic ophiolite, central Arizona". Geology. 19 (6): 590–593. doi:10.1130/0091-7613(1991)019<0590:EPOCA>2.3.CO;2.
  2. 1 2 3 Dann, J.C. (2004). "The 1.73 Ga Payson Ophiolite, Arizona, USA". Developments in Precambrian Geology. 13: 73–93. doi:10.1016/S0166-2635(04)13002-8.
  3. 1 2 Cox, Rónadh; Martin, Mark W.; Comstock, Jana C.; Dickerson, Laura S.; Ekstrom, Ingrid L.; Sammons, James H. (1 December 2002). "Sedimentology, stratigraphy, and geochronology of the Proterozoic Mazatzal Group, central Arizona". GSA Bulletin. 114 (12): 1535–1549. doi:10.1130/0016-7606(2002)114<1535:SSAGOT>2.0.CO;2.