Vaalbara

Last updated
Vaalbara
Diagram of the (conjectured) Vaalbara ancient continent.png
A reconstruction of Vaalbara[ citation needed ]
Historical continent
Formed3.6 Ga
Type Supercontinent
Today part of
Vaalbara today
Map of Kaapvaal craton.svg
IBRA 6.1 Pilbara.png
Current locations of Kaapvaal and Pilbara cratons

Vaalbara is a hypothetical Archean supercontinent consisting of the Kaapvaal Craton (now in eastern South Africa) and the Pilbara Craton (now in north-western Western Australia). E. S. Cheney derived the name from the last four letters of each craton's name. The two cratons consist of continental crust dating from 2.7 to 3.6 Ga, which would make Vaalbara one of Earth's earliest supercontinents. [1]

Contents

Existence and lifespan

There has been some debate as to when and even if Vaalbara existed. An ArchaeanPalaeoproterozoic (2.8–2.1 Ga) link between South Africa and Western Australia was first proposed by A. Button in 1976. He found a wide range of similarities between the Transvaal Basin in South Africa and the Hamersley Basin in Australia. Button, however, placed Madagascar between Africa and Australia and concluded that Gondwana must have had a long stable tectonic history. [2] Similarly, in the reconstruction of Rogers 1993, 1996 the oldest continent is Ur. In Rogers' reconstructions, however, Kaapvaal and Pilbara are placed far apart already in their Gondwana configuration, a reconstruction contradicted by later orogenic events and incompatible with the Vaalbara hypothesis. [3]

Cheney 1996, nevertheless, found a three-fold stratigraphic similarity and proposed that the two cratons once formed a continent which he named Vaalbara. This model is supported by the palaeomagnetic data of Zegers, de Wit & White 1998. [4] Reconstructions of the palaeolatitudes of the two cratons at 2.78–2.77 Ga are ambiguous however. In the reconstruction of Wingate 1998 they fail to overlap, but they do in more recent reconstructions, for example Strik et al. 2003. [5]

Other scientists dispute the existence of Vaalbara and explain similarities between the two cratons as the product of global processes. They point, for example, to thick volcanic deposits on other cratons such as Amazonia, São Francisco, and Karnataka. [6]

Zimgarn, another proposed supercraton composed of the Zimbabwe and Yilgarn cratons at 2.41 Ga, is distinct from Vaalbara. Zimgarn should have disintegrated around 2.1–2.0 Ga to reassemble as the Kalahari and West Australian (Yilgarn and Pilbara) cratons around 1.95–1.8 Ga. [7]

The Archaean–Palaeoproterozoic Grunehogna Craton in Queen Maud Land, East Antarctica, formed the eastern part of the Kalahari Craton for at least a billion years. Grunehogna collided with the rest of East Antarctica during the Mesoproterozoic assembly of the supercontinent Rodinia and the Grenville orogeny. The Neoproterozoic Pan-African orogeny and the assembly of Gondwana/Pannotia produced large shear zones between Grunehogna and Kalahari. During the Jurassic break-up of Gondwana, these shear zones finally separated Grunehogna and the rest of Antarctica from Africa. [8] In the Annandags Peaks in Antarctica, the only exposed parts of Grunehogna, detrital zircons from several crustal sources have been dated to 3.9–3.0 Ga suggesting intracrustal recycling was an important part in the formation of the first cratons. [9]

The Kaapvaal craton is marked by dramatic events such as the intrusion of the Bushveld Complex (2.045 Ga) and the Vredefort impact event (2.025 Ga), and no traces of these events have been found in the Pilbara craton, clearly indicating that the two cratons were separated before 2.05 Ga. [10] Furthermore, geochronological and palaeomagnetic evidence show that the two cratons had a rotational 30° latitudinal separation in the time period of 2.78–2.77 Ga, which indicates they were no longer joined after c. 2.8 billion years ago. [11]

Vaalbara thus remained stable for 1–0.4 Ga and hence had a life span similar to that of later supercontinents such as Gondwana and Rodinia. [10] Some palaeomagnetic reconstructions suggest a Palaeoarchaean proto-Vaalbara is possible, although the existence of this 3.6–3.2 Ga continent cannot be proven. [12]

Evidence

South Africa's Kaapvaal craton and Western Australia's Pilbara craton have similar early Precambrian cover sequences. [13] Kaapvaal's Barberton granite-greenstone terrane and Pilbara's eastern block show evidence of four large meteorite impacts between 3.2 and 3.5 billion years ago. [14] Similar greenstone belts are found at the margins of the Superior Craton of Canada. [15]

The high temperatures created by the impacts' forces fused sediments into small glassy spherules. [16] Spherules of 3.5 billion years old exist in South Africa, and spherules of a similar age have been found in Western Australia; [16] they are the oldest-known terrestrial impact products. [17] The spherules resemble the glassy chondrules (rounded granules) in carbonaceous chondrites, which are found in carbon-rich meteorites and lunar soils. [16]

Remarkably similar lithostratigraphic and chronostratigraphic structural sequences between these two cratons have been noted for the period between 3.5 and 2.7 Ga. [18] Paleomagnetic data from two ultramafic complexes in the cratons showed that at 3.87 Ga the two cratons could have been part of the same supercontinent. [18] Both the Pilbara and Kaapvaal cratons show extensional faults which were active about 3.47 Ga during felsic volcanism and coeval with the impact layers. [18]

Origin of life

The Pilbara and Kaapvaal cratons contain well-preserved Archaean microfossils. Drilling has revealed traces of microbial life and photosynthesis from the Archaean in both Africa and Australia. [19] The oldest widely accepted evidence of photosynthesis by early life forms is molecular fossils found in 2.7 Ga-old shales in the Pilbara Craton. These fossils have been interpreted as traces of eukaryotes and cyanobacteria, though some scientists argue that these biomarkers must have entered these rocks later and date the fossils to 2.15–1.68 Ga. [20] This later time span agrees with estimates based on molecular clocks which dates the eukaryote last common ancestor at 1.8–1.7 Ga. If the Pilbara fossils are traces of early eukaryotes, they could represent groups that went extinct before modern groups emerged. [21]

See also

Notes

  1. Zegers, de Wit & White 1998 , Abstract
  2. Button 1976 , Synopsis, p. 262; for Button's reconstruction see fig. 20f, p. 286
  3. de Kock, Evans & Beukes 2009 , Introduction, pp. 145–146
  4. Zhao et al. 2004 , pp. 96–98
  5. Strik et al. 2003 , Implications for the Vaalbara Hypothesis, pp. 19–20, fig. 11
  6. Nelson, Trendall & Altermann 1999 , Independent development of the Pilbara and Kaapvaal cratons — implications, pp. 186–187
  7. Smirnov et al. 2013 , Abstract
  8. Marschall et al. 2010 , Geology of the Grunehogna Craton, pp. 2278–2280
  9. Marschall et al. 2010 , Conclusions, p. 2298
  10. 1 2 Zegers, de Wit & White 1998 , Discussion, pp. 255–257
  11. Wingate 1998 , Abstract
  12. Biggin et al. 2011 , p. 326
  13. de Kock 2008 , p. VII
  14. Byerly et al. 2002 , Abstract
  15. Nitescu, Cruden & Bailey 2006 , Fig. 1, p. 2
  16. 1 2 3 Erickson 1993 , p. 27
  17. Lowe & Byerly 1986 , p. 83
  18. 1 2 3 Zegers & Ocampo 2003
  19. Philippot et al. 2009 , Abstract; Waldbauer et al. 2009 , Conclusions, p. 45
  20. Rasmussen et al. 2008 , p. 1101
  21. Parfrey et al. 2011, Discussion, p. 13626.

Related Research Articles

<span class="mw-page-title-main">Supercontinent</span> Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.

<span class="mw-page-title-main">Kenorland</span> Hypothetical Neoarchaean supercontinent from about 2.8 billion years ago

Kenorland is a hypothetical Neoarchean supercontinent. If it existed, it would have been one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago by the accretion of Neoarchaean cratons and the formation of new continental crust. It comprised what later became Laurentia, Baltica, Western Australia and Kalaharia.

<span class="mw-page-title-main">Columbia (supercontinent)</span> Ancient supercontinent of approximately 2,500 to 1,500 million years ago

Columbia, also known as Nuna or Hudsonland, is a hypothetical ancient supercontinent. It was first proposed by John J.W. Rogers and M. Santosh in 2002 and is thought to have existed approximately 2,500 to 1,500 million years ago (Ma), in the Paleoproterozoic era. The assembly of the supercontinent was likely completed during global-scale collisional events from 2,100 to 1,800 Ma.

<span class="mw-page-title-main">Arctica</span> Ancient continent in the Neoarchean era

Arctica, or Arctida is a hypothetical ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Pannotia</span> Hypothesized Neoproterozoic supercontinent

Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. A 2022 paper argues that Pannotia never fully existed, reinterpreting the geochronological evidence: "the supposed landmass had begun to break up well before it was fully assembled". However, the assembly of the next supercontinent Pangaea is well established.

<span class="mw-page-title-main">Greenstone belt</span> Zone of variably metamorphosed rocks occurring in Archaean and Proterozoic cratons

Greenstone belts are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that occur within Archaean and Proterozoic cratons between granite and gneiss bodies.

<span class="mw-page-title-main">Atlantica</span> Ancient continent formed during the Proterozoic about 2 billion years ago

Atlantica is an ancient continent that formed during the Proterozoic about 2,000 million years ago from various 2 Ga cratons located in what are now West Africa and eastern South America. The name, introduced by John Rogers in 1996, was chosen because the parts of the ancient continent are now located on opposite sides of the South Atlantic Ocean.

<span class="mw-page-title-main">Congo Craton</span> Precambrian craton that with four others makes up the modern continent of Africa

The Congo Craton, covered by the Palaeozoic-to-recent Congo Basin, is an ancient Precambrian craton that with four others makes up the modern continent of Africa. These cratons were formed between about 3.6 and 2.0 billion years ago and have been tectonically stable since that time. All of these cratons are bounded by younger fold belts formed between 2.0 billion and 300 million years ago.

<span class="mw-page-title-main">Paleoarchean</span> Second era of the Archean Eon

The Paleoarchean, also spelled Palaeoarchaean, is a geologic era within the Archean Eon. The name derives from Greek "Palaios" ancient. It spans the period of time 3,600 to 3,200 million years ago. The era is defined chronometrically and is not referenced to a specific level of a rock section on Earth. The earliest confirmed evidence of life comes from this era, and Vaalbara, one of Earth's earliest supercontinents, may have formed during this era.

<span class="mw-page-title-main">Neoarchean</span> Fourth era of the Archean Eon

The Neoarchean is the last geologic era in the Archean Eon that spans from 2800 to 2500 million years ago—the period being defined chronometrically and not referencing a specific level in a rock section on Earth. The era is marked by major developments in complex life and continental formation.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Pilbara Craton</span> Old and stable part of the continental lithosphere located in Pilbara, Western Australia

The Pilbara Craton is an old and stable part of the continental lithosphere located in the Pilbara region of Western Australia.

<span class="mw-page-title-main">Zimbabwe Craton</span> Area in Southern Africa of ancient continental crust

The Zimbabwe Craton is an area in Southern Africa of ancient continental crust, being a part of the ancient continent of Western Gondwana, with rocks dating back to the early Archean Eon, possibly as early as 3.46 billion years ago (Ga.). The craton is named after the country of Zimbabwe where the majority of the craton is. The rocks of the Zimbabwe Craton are separated from the rocks of the Kaapvaal Craton to the southeast by the 250 kilometres (160 mi) wide Limpopo Belt of granulite facies tectonites. The Limpopo belt formed contemporaneously with the Zimbabwe and Kaapvaal cratons, but remained geologically active until much later. It was only in the late Archean, ca. 2.8-2.5 Ga., that the two cratons were stabilized together and that high-grade metamorphism ceased in the Limpopo Belt. North of the Zimbabwe Craton is the Zambezi Belt.

The Sclavia Craton is a late Archean supercraton thought to be parental to the Slave and Wyoming Cratons in North America, the Dharwar Craton in southern India, and the Zimbabwe Craton in southern Africa. Sclavia was proposed by Bleeker 2003 who estimated the number of Archean cratons to be about 35; cratonic fragments which he suggested were derived from a single or a few supercratons.

<span class="mw-page-title-main">Kalahari Craton</span> African geological area

The Kalahari Craton is a craton, an old and stable part of the continental lithosphere, that occupies large portions of South Africa, Botswana, Namibia and Zimbabwe. It consists of two cratons separated by the Limpopo Belt: the larger Kaapvaal Craton to the south and the smaller Zimbabwe Craton to the north. The Namaqua Belt is the southern margin of the Kaapvaal Craton.

<span class="mw-page-title-main">Ur (continent)</span> Hypothetical Archaean supercontinent from about 3.1 billion years ago

Ur is a hypothetical supercontinent that formed in the Archean eon around 3.1 billion years ago (Ga). In a reconstruction by Rogers, Ur is half a billion years older than Arctica and, in the early period of its existence, probably the only continent on Earth, making it a supercontinent despite probably being smaller than present-day Australia. In more recent works geologists often refer to both Ur and other proposed Archaean continental assemblages as supercratons. Ur can, nevertheless, be half a billion years younger than Vaalbara, but the concepts of these two early cratonic assemblages are incompatible.

<span class="mw-page-title-main">Archean life in the Barberton Greenstone Belt</span> Some of the most widely accepted fossil evidence for Archean life

The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.

<span class="mw-page-title-main">Eastern Pilbara Craton</span> Carton in Western Australia

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

A continent is a large geographical region defined by the continental shelves and the cultures on the continent. In the modern day, there are seven continents. However, there have been more continents throughout history. Vaalbara was the first supercontinent. Europe is the newest continent. Geologists have predicted that certain continents will appear, these being Pangaea Proxima, Novopangaea, Aurica, and Amasia.

References