Aurica (supercontinent)

Last updated
A video showing the assembly of Aurica.

Aurica is a possible future supercontinent configuration. It is one of the four proposed supercontinents that are speculated to form within 200 million years, the others being Pangaea Proxima, Amasia, and Novopangaea. The Aurica hypothesis was created by scholars at the Geological Magazine [1] following an American Geophysical Union study linking the strength of ocean tides to the supercontinent cycle. [2] The name is a portmanteau of America and Australia, which form the core of the supercontinent. The study noted that "When tectonic plates slide, sink and shift the Earth's continents to form large landmasses, or supercontinents, ocean basins open and close in tandem. As these basins change shape, they can strike forms that amplify and intensify their tides."

Contents

Formation

According to the Aurica hypothesis, both the Atlantic and Pacific Oceans will close, and a new ocean will replace them both. Duarte and colleagues hypothesize that a new rift (the Baikal Rift Zone) will develop in central Eurasia through Lake Baikal due to the gravitational collapse of the Himalayan plateau, cutting from western India to the Arctic, which will split Eurasia in two resulting in Pakistan and Russia to split apart from China, India, and Mongolia. The Indian Ocean (or an ocean which could form within the East African Rift) and Southern Ocean will expand into the rift. [1]

The current northward motion of Australia and Antarctica will collide with South Korea, Japan, Indonesia, Peru, Mexico, The Western United States, and The Philippines respectively to close the Pacific, while Portugal and Morocco will collide with the Eastern United States between Florida and Maine while Ireland and the United Kingdom will merge with Canada (close to their relative positions while part of Pangaea) on the other side to close the Atlantic resulting in Cuba and Brazil to be merged with Nigeria and South Africa. The Indian and Southern Oceans will merge into a new superocean surrounding the resultant supercontinent. [1]

Alternative scenarios

Paleogeologist Ronald Blakey has described the next 15 to 85 million years of tectonic development as fairly settled and predictable, without supercontinent formation. [3] Beyond that, he cautions that the geologic record is full of unexpected shifts in tectonic activity that make further projections "very, very speculative". [3] Three hypothetical supercontinents"Amasia", Christopher Scotese's "Pangaea Proxima", and Roy Livermore's "Novopangaea"were illustrated in an October 2007 New Scientist article. [4]

Related Research Articles

<span class="mw-page-title-main">Supercontinent</span> Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

<span class="mw-page-title-main">Laurasia</span> Northern landmass that formed part of the Pangaea supercontinent

Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.

<span class="mw-page-title-main">Iapetus Ocean</span> Ocean that existed in the late Neoproterozoic and early Paleozoic eras

The Iapetus Ocean existed in the late Neoproterozoic and early Paleozoic eras of the geologic timescale. It lay in the southern hemisphere, between the paleocontinents of Laurentia, Baltica and Avalonia. The ocean disappeared with the Acadian, Caledonian and Taconic orogenies, when these three continents joined to form one big landmass called Euramerica. The "southern" Iapetus Ocean has been proposed to have closed with the Famatinian and Taconic orogenies, meaning a collision between Western Gondwana and Laurentia.

<span class="mw-page-title-main">Pangaea Proxima</span> Hypothetical future supercontinent

Pangaea Proxima is a possible future supercontinent configuration. Consistent with the supercontinent cycle, Pangaea Proxima could form within the next 250 million years. This potential configuration, hypothesized by Christopher Scotese in November 1982, earned its name from its similarity to the previous Pangaea supercontinent. Scotese later changed Pangaea Ultima to Pangaea Proxima to alleviate confusion about the name Pangaea Ultima which could imply that it would be the last supercontinent. The concept was suggested by extrapolating past cycles of formation and breakup of supercontinents, not on theoretical understanding of the mechanisms of tectonic change, which are too imprecise to make predictions that far into the future. "It's all pretty much fantasy to start with," Scotese has said. "But it's a fun exercise to think about what might happen. And you can only do it if you have a really clear idea of why things happen in the first place."

<span class="mw-page-title-main">Siberia (continent)</span> Ancient craton forming the Central Siberian Plateau

Siberia, also known as Siberian Craton, Angaraland and Angarida, is an ancient craton in the heart of Siberia. Today forming the Central Siberian Plateau, it formed an independent landmass prior to its fusion into Pangea during the Late Carboniferous-Permian. The Verkhoyansk Sea, a passive continental margin, was fringing the Siberian Craton to the east in what is now the East Siberian Lowland.

In hydrology, an oceanic basin (or ocean basin) is anywhere on Earth that is covered by seawater. Geologically, most of the ocean basins are large geologic basins that are below sea level.

<span class="mw-page-title-main">Amasia (supercontinent)</span> Possible future supercontinent

Amasia is a possible future supercontinent which could be formed by the merge of Asia and the Americas. The prediction relies mostly on the fact that the Pacific Plate is already subducting under Eurasia and the Americas, a process which if continued will eventually cause the Pacific to close. Meanwhile, because of the Atlantic mid-ocean ridge, North America would be pushed westward. Thus, the Atlantic at some point in the future would be larger than the Pacific. In Siberia, the boundary between the Eurasian and North /South American Plates has been stationary for millions of years. The combination of these factors would cause the Americas to be combined with Asia, thus forming a supercontinent. A February 2012 study predicts Amasia will form over the North Pole, in about 50 to 200 million years, closing the Arctic Ocean.

<span class="mw-page-title-main">Supercontinent cycle</span> Repeated joining and separation of Earths continents

The supercontinent cycle is the quasi-periodic aggregation and dispersal of Earth's continental crust. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete supercontinent cycle is said to take 300 to 500 million years. Continental collision makes fewer and larger continents while rifting makes more and smaller continents.

<span class="mw-page-title-main">Wilson Cycle</span> Geophysical model of the opening and closing of rifts

The Wilson Cycle is a model that describes the opening and closing of ocean basins and the subduction and divergence of tectonic plates during the assembly and disassembly of supercontinents. A classic example of the Wilson Cycle is the opening and closing of the Atlantic Ocean. It has been suggested that Wilson cycles on Earth started about 3 Ga in the Archean Eon. The Wilson Cycle model was a key development in the theory of plate tectonics during the Plate Tectonics Revolution.

<span class="mw-page-title-main">Superocean</span> Ocean that surrounds a supercontinent

A superocean is an ocean that surrounds a supercontinent. It is less commonly defined as any ocean larger than the current Pacific Ocean. Named global superoceans include Mirovia, which surrounded the supercontinent Rodinia, and Panthalassa, which surrounded the supercontinent Pangaea. Pannotia and Columbia, along with landmasses before Columbia, were also surrounded by superoceans.

<span class="mw-page-title-main">Paleo-Tethys Ocean</span> Ocean on the margin of Gondwana between the Middle Cambrian and Late Triassic

The Paleo-Tethys or Palaeo-Tethys Ocean was an ocean located along the northern margin of the paleocontinent Gondwana that started to open during the Middle Cambrian, grew throughout the Paleozoic, and finally closed during the Late Triassic; existing for about 400 million years.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Afro-Eurasia</span> Landmass consisting of Africa, Asia, and Europe

Afro-Eurasia is a landmass comprising the continents of Africa, Asia, and Europe. The terms are compound words of the names of its constituent parts. Afro-Eurasia has also been called the "Old World", in contrast to the "New World" referring to the Americas.

<span class="mw-page-title-main">Laurentia</span> Craton forming the geological core of North America

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and the Hebridean Terrane in northwest Scotland. During other times in its past, Laurentia has been part of larger continents and supercontinents and consists of many smaller terranes assembled on a network of early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Pangaea</span> Supercontinent from the late Paleozoic to early Mesozoic eras

Pangaea or Pangea was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. In contrast to the present Earth and its distribution of continental mass, Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and the first to be reconstructed by geologists.

<span class="mw-page-title-main">Geology of the North Sea</span> Description of the current geological features and the geological history that created them

The geology of the North Sea describes the geological features such as channels, trenches, and ridges today and the geological history, plate tectonics, and geological events that created them.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Novopangaea</span> Possible future supercontinent

Novopangaea or Novopangea is a possible future supercontinent postulated by Roy Livermore in the late 1990s. It assumes closure of the Pacific, docking of Australia with East Asia and North America, and northward motion of Antarctica.

<span class="mw-page-title-main">Gulf of Mexico basin</span> Oceanic rift basin

The formation of the Gulf of Mexico, an oceanic rift basin located between North America and the Yucatan Block, was preceded by the breakup of the Supercontinent Pangaea in the Late-Triassic, weakening the lithosphere. Rifting between the North and South American plates continued in the Early-Jurassic, approximately 160 million years ago, and formation of the Gulf of Mexico, including subsidence due to crustal thinning, was complete by 140 Ma. Stratigraphy of the basin, which can be split into several regions, includes sediments deposited from the Jurassic through the Holocene, currently totaling a thickness between 15 and 20 kilometers.

A continent is a large geographical region defined by the continental shelves and the cultures on the continent. In the modern day, there are seven continents. However, there have been more continents throughout history. Vaalbara was the first supercontinent. Europe is the newest continent. Geologists have predicted that certain continents will appear, these being Pangaea Proxima, Novopangaea, Aurica, and Amasia.

References

  1. 1 2 3 Duarte, João; Schellart, Wouter; Rosas, Filipe (3 October 2016). "The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation". Geological Magazine. 155: 45–58. doi:10.1017/S0016756816000716. S2CID   132854162 via Cambridge University Press.
  2. "Study proposed link between the formation of supercontinents, the strength of ocean tides". AGU.org. 11 April 2018. Archived from the original on 2018-12-08.
  3. 1 2 Manaugh, Geoff; Twiley, Nicola (23 September 2013). "What Did the Continents Look Like Millions of Years Ago?". The Atlantic. Archived from the original on 2013-09-25. Retrieved 2014-07-22.
  4. Williams, Caroline; Nield, Ted (20 October 2007). "Pangaea, the comeback". New Scientist. Archived from the original on 13 April 2008. Retrieved 4 August 2016.